Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
 Log in
e-Learning - UNIMIB
Home
Percorso della pagina
  1. Science
  2. Bachelor Degree
  3. Scienza dei Materiali [E2701Q]
  4. Courses
  5. A.A. 2023-2024
  6. 3rd year
  1. Materials Physics
  2. Summary
Unità didattica Course full name
Materials Physics
Course ID number
2324-3-E2701Q045-E2701Q048M
Course summary SYLLABUS

Blocks

Back to Materials Physics With Laboratory

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

Fornire allo studente le basi per la comprensione delle proprietà fisiche dei materiali e della loro misura.

Contenuti sintetici

Introduzione alla fisica dei materiali: proprietà meccaniche, elastiche, elettroniche e magnetiche.

Programma esteso

FISICA DEI MATERIALI

Strutture cristalline

  • Descrizione generale delle strutture cristalline
  • Alcune importanti strutture cristalline
  • Strutture cubiche
  • Strutture compatte
  • Strutture di solidi covalenti
  • Determinazione della struttura cristallina

Diffrazione di raggi X

  • Teoria di Bragg
  • Piani reticolari e indici di Miller
  • Teoria generale della diffrazione
  • Il reticolo reciproco
  • Significato del reticolo reciproco
  • Diffrazione di raggi X da strutture periodiche
  • La sfera di Ewald
  • Relazione tra la teoria di Bragg e Laue

Legami nei solidi

  • Forze attrattive e repulsive
  • Legame ionico
  • Legame covalente
  • Legame metallico
  • Legame idrogeno
  • Legami di van der Waals

Proprietà meccaniche

  • Deformazione elastica
  • Descrizione macroscopica
  • Costanti elastiche
  • Rapporto di Poisson
  • Relazione tra costanti elastiche
  • Descrizione microscopica
  • Deformazione plastica
  • Stima dello stress del punto di snervamento
  • Difetti puntuali e dislocazioni
  • Il ruolo dei difetti nella deformazione plastica
  • Frattura

Proprietà termiche del reticolo

  • Vibrazioni del reticolo
  • Oscillatore armonico
  • Catena infinita di atomi
  • Catena con un atomo per cella
  • La prima zona di Brillouin
  • Catena con due atomi per cella
  • Catena finita
  • Vibrazioni quantizzate, fononi
  • Solidi tridimensionali
  • Generalizzazione a tre dimensioni
  • Stima delle frequenze vibrazionali a partire dalle costanti elastiche
  • Capacità termica del reticolo
  • Confronto tra la teoria classica e l'esperimento
  • Modello di Einstein
  • Modello di Debye
  • Conduttività termica
  • Dilatazione termica
  • Transizioni di fase allotropiche e fusione

Proprietà elettroniche dei metalli: approccio classico

  • Presupposti di base del modello di Drude
  • Risultati dal modello Drude
  • Conducibilità elettrica in corrente continua
  • Effetto Hall
  • Riflettività ottica dei metalli
  • Legge di Wiedemann-Franz
  • Carenze del modello Drude

Proprietà elettroniche dei solidi: approccio quantistico

  • L'idea delle bande energetiche
  • Modello di elettrone libero
  • Autostati elettronici
  • Capacità termica elettronica
  • La legge di Wiedemann-Franz
  • Descrizione generale degli stati elettronici
  • Modello di elettrone quasi libero
  • Bande energetiche in solidi reali
  • Proprietà di trasporto

Semiconduttori

  • Semiconduttori intrinseci
  • Dipendenza dalla temperatura della densità dei portatori
  • Semiconduttori drogati
  • Droganti n e p
  • Densità di portatori
  • Conducibilità dei semiconduttori
  • Dispositivi a semiconduttore
  • Giunzione pn
  • Transistor JFET
  • Sistema metallo-ossido-semiconduttore
  • Dispositivi optoelettronici
  • Transistor MOSFET

Magnetismo

  • Descrizione macroscopica
  • Descrizione quantistica del magnetismo
  • Paramagnetismo e diamagnetismo
  • Paramagnetismo di Curie
  • Paramagnetismo di Pauli
  • Ordine magnetico e interazione di scambio
  • Ferromagnetismo
  • Domini ferromagnetici
  • Isteresi

Dielettrici

  • Descrizione macroscopica
  • Polarizzazione microscopica
  • Il campo locale
  • Dipendenza della costante dielettrica dalla frequenza
  • Eccitazione delle vibrazioni del reticolo
  • Transizioni elettroniche
  • Impurezze nei dielettrici
  • Ferroelettrici
  • Piezoelettricità
  • Breakdown dielettrico

Prerequisiti

Buone conoscenze di Fisica Generale e tecniche di calcolo integrale e differenziale. Conoscenze di base di Fisica Quantistica.

Modalità didattica

Lezioni frontali (in lingua italiana)

Materiale didattico

  • Solid State Physics: An Introduction, di Philip Hofmann (Testo principale di riferimento)
  • Principi di Fisica dei Semiconduttori di Mario Guzzi (Testo per i semiconduttori)
  • Materiale distribuito dal docente.

Periodo di erogazione dell'insegnamento

I Semestre

Modalità di verifica del profitto e valutazione

L'esame di Fisica dei Materiali con Laboratorio si articola in prove orali con la compilazione di una relazione di laboratorio. Il corso di Fisica dei materiali con Laboratorio e’ composto da 14 CFU. L’esame è diviso in tre moduli, uno di laboratorio e due di teoria. Questi tre moduli possono essere sostenuti o contemporaneamente o separatamente.

I due moduli di Fisica dei Materiali sono incentrati sulla teoria della fisica dei materiali e hanno un peso relativo pari a 5/14 e 6/14. Il primo modulo comincia con le strutture cristalline e arriva fino alla descrizione classica degli elettroni nei solidi. Il secondo modulo comincia con la descrizione quantistica degli elettroni nei solidi e finisce con i dielettrici.

Orario di ricevimento

alla fine delle lezioni o su appuntamento

Sustainable Development Goals

ENERGIA PULITA E ACCESSIBILE | IMPRESE, INNOVAZIONE E INFRASTRUTTURE
Export

Aims

Provide the student with the basis for understanding the physical properties of materials and their measurement.

Contents

Introduction to the physics of materials: mechanical, elastic, electronic and magnetic properties.

Detailed program

PHYSICS OF MATERIALS

Crystal Structures

  • General Description of Crystal Structures
  • Some Important Crystal Structures
  • Cubic Structures
  • Close-Packed Structures
  • Structures of Covalently Bonded Solids
  • Crystal Structure Determination

X-Ray Diffraction

  • Bragg Theory
  • Lattice Planes and Miller Indices
  • General Diffraction Theory
  • The Reciprocal Lattice
  • The Meaning of the Reciprocal Lattice
  • X-Ray Diffraction from Periodic Structures
  • The Ewald Construction
  • Relation Between Bragg and Laue Theory

Bonding in Solids

  • Attractive and Repulsive Forces
  • Ionic Bonding
  • Covalent Bonding
  • Metallic Bonding
  • Hydrogen Bonding
  • van derWaals Bonding

Mechanical Properties

  • Elastic Deformation
  • Macroscopic Picture
  • Elastic Constants
  • Poisson’s Ratio
  • Relation between Elastic Constants
  • Microscopic Picture
  • Plastic Deformation
  • Estimate of the Yield Stress
  • Point Defects and Dislocations
  • The Role of Defects in Plastic Deformation
  • Fracture

Thermal Properties of the Lattice

  • Lattice Vibrations
  • A Simple Harmonic Oscillator
  • An Infinite Chain of Atoms
  • One Atom Per Unit Cell
  • The First Brillouin Zone
  • Two Atoms per Unit Cell
  • A Finite Chain of Atoms
  • Quantized Vibrations, Phonons
  • Three-Dimensional Solids
  • Generalization to Three Dimensions
  • Estimate of the Vibrational Frequencies from the Elastic Constants
  • Heat Capacity of the Lattice
  • ClassicalTheory and Experimental Results
  • Einstein Model
  • Debye Model
  • Thermal Conductivity
  • Thermal Expansion
  • Allotropic Phase Transitions and Melting

Electronic Properties of Metals: Classical Approach

  • Basic Assumptions of the Drude Model
  • Results from the Drude Model
  • DC Electrical Conductivity
  • Hall Effect
  • Optical Reflectivity of Metals
  • TheWiedemann–Franz Law
  • Shortcomings of the Drude Model

Electronic Properties of Solids: Quantum Mechanical Approach

  • The Idea of Energy Bands
  • Free Electron Model
  • The Quantum Mechanical Eigenstates
  • Electronic Heat Capacity
  • The Wiedemann–Franz Law
  • The General Form of the Electronic States
  • Nearly Free Electron Model
  • Energy Bands in Real Solids
  • Transport Properties

Semiconductors

  • Intrinsic Semiconductors
  • Temperature Dependence of the Carrier Density
  • Doped Semiconductors
  • n and p Doping
  • Carrier Density
  • Conductivity of Semiconductors
  • Semiconductor Devices
  • The pn Junction
  • Transistors
  • Optoelectronic Devices

Magnetism

  • Macroscopic Description
  • Quantum Mechanical Description of Magnetism
  • Paramagnetism and Diamagnetism in Atoms
  • Weak Magnetism in Solids
  • Diamagnetic Contributions
  • Contribution from the Atoms
  • Contribution from the Free Electrons
  • Paramagnetic Contributions
  • Curie Paramagnetism
  • Pauli Paramagnetism
  • Magnetic Ordering
  • Magnetic Ordering and the Exchange Interaction
  • Magnetic Ordering for Localized Spins
  • Magnetic Ordering in a Band Picture
  • Ferromagnetic Domains
  • Hysteresis

Dielectrics

  • Macroscopic Description
  • Microscopic Polarization
  • The Local Field
  • Frequency Dependence of the Dielectric Constant
  • Excitation of Lattice Vibrations
  • Electronic Transitions
  • Impurities in Dielectrics
  • Ferroelectricity
  • Piezoelectricity
  • Dielectric Breakdown

Prerequisites

Good knowledge of General Physics and techniques of integral and differential calculus. Basic knowledge of Quantum Physics.

Teaching form

Lectures (in italian)

Textbook and teaching resource

- Solid State Physics: An Introduction, di Philip Hofmann (Main reference book)

  • Principi di Fisica dei Semiconduttori di Mario Guzzi (Semiconductor book)
  • Notes from the lecturer.

Semester

I Semester

Assessment method

The Physics examination of the Materials with the Laboratory is divided into oral tests, with the compilation of a laboratory report. The Materials Physics course with Laboratory is composed of 14 CFU. The exam is divided into three modules, one relative to the laboratory and two modules dedicated to theory. These three modules can be passed either simultaneously or separately.

The two modules of Physics of Materials are focused on the theory of physics of materials and have a relative weight equal to 5/14 and 6/14. The first module begins with the crystalline structures and ends with the classical description of electrons in solids. The second module begins with the quantum description of electrons in solids and ends with the dielectrics.

Office hours

at the end of the lessons or by appointment

Sustainable Development Goals

AFFORDABLE AND CLEAN ENERGY | INDUSTRY, INNOVATION AND INFRASTRUCTURE
Enter

Key information

Field of research
FIS/03
ECTS
8
Term
First semester
Activity type
Mandatory
Course Length (Hours)
56
Degree Course Type
Degree Course
Language
Italian

Staff

    Teacher

  • Emiliano Bonera
    Emiliano Bonera

Enrolment methods

Self enrolment (Student)
Manual enrolments

Sustainable Development Goals

AFFORDABLE AND CLEAN ENERGY - Ensure access to affordable, reliable, sustainable and modern energy for all
AFFORDABLE AND CLEAN ENERGY
INDUSTRY, INNOVATION AND INFRASTRUCTURE - Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation
INDUSTRY, INNOVATION AND INFRASTRUCTURE

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics