Course Syllabus
Obiettivi formativi
Lo studente verrà preparato ad individuare le corrette tecniche statistiche da utilizzare come supporto nei processi decisionali che caratterizzano i contesti aziendali. Lo studente apprenderà come gestire l’incertezza dei risultati aziendali e come tendere al miglioramento della qualità produttiva, mediante alcune tecniche di elaborazione dei dati. Lo studente svilupperà un approccio critico nella lettura di elaborazioni di dati prodotte da terzi, con specifica attenzione alle assunzioni necessarie affinché tali risultati risultino affidabili e dunque fruibili. Lo studente sarà inoltre in grado di scegliere adeguate forme di presentazione delle elaborazioni, utilizzando un linguaggio comprensibile anche a persone non preparate in campo statistico. Lo studente acquisirà infine autonomia nella comprensione di ulteriori tecniche statistiche, non direttamente oggetto dell’insegnamento, adatte ai diversi problemi aziendali incontrati durante la propria attività di studio e di lavoro.
Contenuti sintetici
L’insegnamento si propone, in primo luogo, di fornire una conoscenza della probabilità e delle tecniche statistiche per il trattamento di dati campionari provenienti da contesti economico-aziendali. Verranno inoltre studiate alcune tecniche statistiche per il monitoraggio ed il miglioramento della qualità nei processi produttivi.
Programma esteso
Esperimenti casuali e modelli probabilistici. Metodi di assegnazione delle probabilità. Gli assiomi di Kolmogorov e le leggi del calcolo delle probabilità. Regole di conteggio per determinare probabilità classiche. Probabilità condizionata. Teorema della probabilità composta. Eventi indipendenti. Formula della probabilità totale e di Bayes. Variabili casuali. Distribuzioni discrete e continue. Distribuzioni congiunte e indipendenza. Quantili. Valore atteso, varianza e covarianza. Distribuzioni notevoli: distribuzioni bernoulliane, binomiali, multinomiali, ipergeometriche, di Poisson, esponenziali e normali. Approssimazioni normali.
Campionamento e distribuzioni campionarie. Unità, popolazione, campione. Popolazioni finite e infinite. Parametri. Campionamento casuale semplice e altri metodi di campionamento. Statistiche campionarie, stime puntuali, stimatori e distribuzioni campionarie. Media campionaria. Proporzione campionaria.
Stima intervallare. Intervalli di confidenza, margine d’errore, livello di confidenza. Intervalli di confidenza per la media: varianza nota e varianza non nota. Intervalli di confidenza per la proporzione. Determinazione dell’ampiezza campionaria.
Verifiche d’ipotesi. Ipotesi nulla e ipotesi alternativa; scelta dell’ipotesi nulla. Errori di primo e secondo tipo. Livello di significatività di un test. Approccio del valore critico e approccio del p-value. Test ad una coda e test a due code. Relazione tra test a due code e intervalli di confidenza. Test sulla media: varianza nota e non nota. Test sulla proporzione.
Test e intervalli di confidenza sulla differenza tra due medie. Campioni indipendenti e appaiati. Test e intervalli di confidenza sulla differenza tra due proporzioni.
Test Chi quadrato sulle proporzioni di una popolazione multinomiale. Test di indipendenza.
Modello di regressione lineare semplice. Metodi per verificare gli assunti del modello di regressione lineare. Stime puntuali per i parametri del modello di regressione lineare. Intervalli di confidenza per i parametri. Test sulla significatività della regressione. Stima del valore medio e previsione (puntuale e intervallare) di un singolo singolo valore. Cenni sul modello di regressione lineare multipla.
Prerequisiti
Statistica di base. Statistica descrittiva. Matematica di base.
Metodi didattici
Lezioni frontali con teoria ed esericizi.
Modalità di verifica dell'apprendimento
L'esame consiste in una prova scritta alla quale si aggiunge eventualmente (a discrezione del docente qualora l'esito della prova scritta non fosse pienamente sufficente) una prova orale integrativa. L'esame scritto consiste in tre esercizi nei quali viene messa alla prova la capacità di individuare e applicare metodi d'analisi adeguati alla soluzione di alcuni problemi. L'esame scritto contiene anche domande per verificare la conoscenza di definizioni, la capacità di giustificare l'impiego dei metodi scelti nella soluzione ai problem proposti nonchè di commentare e interpretare i risultati ottenuti. Nella valutazione di queste domande verrà dato molto peso all'utilizzo corretto dei termini tecnici introdotti durante il corso.
Testi di riferimento
D. Anderson, D. Sweeney, T. Williams “Statistica per le analisi economico-aziendali”, 2010, Apogeo Education – Maggioli Editore.
Lesson slides (on the course website in eLearning).
Periodo di erogazione dell'insegnamento
Secondo semestre.
Lingua di insegnamento
Italiano.
Sustainable Development Goals
Learning objectives
Students will be prepared to locate proper statistical techniques to support decision-making in business. Students will learn how to manage uncertainty in business and how to strive for quality improvement in production, by using suitable data-processing tools. Students will develop a critical approach when dealing with data processed by third parties, focussing on the fulfillment of the underlying assumptions. Moreover, students will develop the ability to communicate the outcomes of data processing, even to people without any statistical knowledge. Finally, students will learn how to understand other statistical techniques, not covered in this course, which might be dealt with for study or work.
Contents
The course aims at providing suitable knowledge of probability and of statistical techniques for sample data, especially those concerning economic phenomena and business. Statistical techniques to monitor and to improve the quality of manufacturing processes will also be dealt with.
Detailed program
Random experiments and probablity models. Methods for probability assignment. Kolmogorov axioms and probability laws. Basic combinatorial calculus for classical probability computation. Conditional probability. Product rule. Independent events. Total probability law and Bayes' rule. Random variables. Discrete and continuous distributions. Joint distributions and independence. Expectation, variance and covariance. Widely used distributions: Bernoulli, binomial, multinomial, hypergeometric, Poisson, exponential and normal. Normal approximations.
Sampling and sampling distributions. Finite and infinite populations. Parameters. Simple random sampling and other sampling designs. Sample statistics and point estimation. Sample mean and sample proportion.
Interval estimation. Confidence intervals, margin of error, confidence level. Confidence intervals for the population mean: known and unknown variance. Minimum sample size computations. Confidence intervals for a proportion.
Hypothesis testing. Null and alternative hypothesis. Type I and type II errors. Significance level of a test. Critical-value approach and p-value approach. One-sided and two-sided tests. Relationship between two-sided tests and confidence intervals. Tests on the population mean: known and unknown variance. Tests on a proportion.
Tests and confidence intervals for the difference between two means: paired and independent samples. Tests and confidence intervals for the difference between two proportions.
Two Chi-squared tests: goodness-of-fit and independence.
Linear regression model. Methods for testing the assumptions. Parameter estimation and confidence intervals. Significance test. Confidence intervals for conditional means and prediction intervals. Introduction to multivariate regression models.
Prerequisites
Basic statistics. Descriptive statistics. Basic mathematics.
Teaching methods
Frontal lessons (theory and examples).
Assessment methods
The exam is written. The exam consists of three exercises to test students' ability to locate proper methods for the solution of some practical problems. The exam contains also questions to test students' knowledge and understanding of definitions, their ability to motivate the method of choice in their solutions to the proposed problems as well as their ability to interpret results. Evaluation of these questions depends heavily on proper use of techincal terms introduced during the course. Students who don't pass the written exam but achieve close to passing score will be asked to take an additional oral exam.
Textbooks and Reading Materials
D. Anderson, D. Sweeney, T. Williams “Statistica per le analisi economico-aziendali”, 2010, Apogeo Education – Maggioli Editore.
Slides delle lezioni fornite dal docente (sulla pagina eLearning del corso).
Semester
Second semester.
Teaching language
Italian.
Sustainable Development Goals
Key information
Staff
-
Leo Pasquazzi