Course Syllabus
Titolo
Autovalori di problemi singolarmente perturbati
Docente(i)
Veronica Felli
Lingua
Inglese
Breve descrizione
Questo corso si occupa del comportamento degli autovalori di operatori ellittici sotto perturbazioni singolari. Dopo un'introduzione ai fondamenti della teoria spettrale per gli operatori ellittici, discuteremo il problema della stabilità spettrale per vari tipi di perturbazioni singolari, inclusa la rimozione di piccoli buchi nel dominio sotto condizioni al contorno di Dirichlet o Neumann. Nel caso di un piccolo insieme rimosso dal dominio, svilupperemo una teoria perturbativa, considerando la capacità dell'insieme rimosso come parametro di perturbazione nel caso di Dirichlet, o una nozione di rigidità torsionale al bordo nel caso di Neumann. Inoltre, un'analisi di blow-up per potenziali capacitari e autofunzioni sarà utilizzata per ottenere espansioni asintotiche esplicite in alcuni casi.
CFU / Ore
3 cfu / 24 ore
Periodo di erogazione
Aprile-Maggio 2025
Title
Eigenvalues of singularly perturbed problems
Teacher(s)
Veronica Felli
Language
English
Short description
This course focuses on the behavior of eigenvalues of elliptic operators under singular perturbations. After an introduction to the basics of spectral theory for elliptic operators, we will discuss the problem of spectral stability for various types of singular perturbations, including the removal of small holes in the domain under Dirichlet or Neumann boundary conditions. In the case of a small set removed from the domain, we will develop a perturbative theory, considering the capacity of the removed set as the perturbation parameter in the Dirichlet case, or a notion of boundary torsional rigidity in the Neumann case. Additionally, a blow-up analysis for capacitary potentials and eigenfunctions will be used to derive explicit asymptotic expansions in some cases.
CFU / Hours
3 cfu / 24 hours
Teaching period
April-May 2025