Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • More
Listen to this page using ReadSpeaker
You are currently using guest access
 Log in
e-Learning - UNIMIB
Home
Percorso della pagina
  1. Medicine and Surgery
  2. Single Cycle Master Degree (6 years)
  3. Medicine and Surgery [H4104D - H4102D]
  4. Courses
  5. A.A. 2018-2019
  6. 1st year
  1. Fundamentals of Cell Biology and Genetics
  2. Summary
Insegnamento con unità didattiche Course full name
Fundamentals of Cell Biology and Genetics
Course ID number
1819-1-H4102D002
Course summary SYLLABUS

Blocks

Skip Teaching units

Teaching units

Course full name Cell and Molecular Biology I Course ID number 1819-1-H4102D002-H4102D006M
Course summary SYLLABUS
Course full name Cell and Molecular Biology II Course ID number 1819-1-H4102D002-H4102D007M
Course summary SYLLABUS
Course full name Genetics I Course ID number 1819-1-H4102D002-H4102D008M
Course summary SYLLABUS
Course full name Genetics II Course ID number 1819-1-H4102D002-H4102D009M
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

Il corso fornisce allo studente le conoscenze teoriche essenziali della biologia e della genetica, nella prospettiva della loro successiva applicazione professionale in campo medico. Gli argomenti del Corso costituiscono gli strumenti necessari alla comprensione dei processi vitali a livello cellulare e molecolare, così come delle leggi alla base dell’ ereditarietà dei caratteri e dei processi coinvolti nella generazione della diversità fenotipica. Le nozioni acquisite contribuiscono alla comprensione dei processi biologici alla base di condizioni normali e patologiche.


Contenuti sintetici

Struttura e funzione delle principali macromolecole cellulari; duplicazione del DNA e meccanismi di riparazione del danno; trascrizione e maturazione dell’RNA; traduzione e meccanismi di regolazione dello smistamento delle proteine; basi molecolari dell’espressione e della regolazione dell’informazione genica, con analisi dei meccanismi epigenetici, trascrizionali e post-trascrizionali; vie di trasduzione del segnale; meccanismi che controllano la divisione e il differenziamento cellulare; concetti e modalità di trasmissione dei caratteri ereditari; meccanismi che possono dar luogo a varianti fenotipiche nell’uomo; metodologia dell’analisi genetica e la sua utilità nella pratica medica; applicazioni biotecnologiche in medicina (terapia genica).

Programma esteso

BIOLOGIA GENERALE - Principi di classificazione degli organismi viventi - Struttura ed organizzazione delle cellule procariotiche ed eucariotiche - Virus, classificazione, ciclo litico e lisogeno 

BIOLOGIA MOLECOLARE. La composizione chimica e l’organizzazione molecolare della cellula: o Acqua o Carboidrati o Lipidi o Proteine o Acidi nucleici - L'identificazione del composto chimico depositario dell'informazione genetica - Basi molecolari dell’informazione ereditaria. - La replicazione del DNA. Telomerasi - La riparazione del DNA. Correlazioni con: patologie umane, invecchiamento cellulare e cancro - RNA, struttura e funzione - Trascrizione e maturazione degli RNA - Caratteristiche generali del codice genetico. Implicazioni biologiche - Sintesi proteica - Destino post-sintetico delle proteine - Regolazione dell’espressione genica o Procarioti o Eucarioti - Gli strumenti dell’ingegneria genetica (enzimi di restrizione, vettori, Southern-blotting, PCR, sequenziamento, microarrays) - Il clonaggio molecolare - La clonazione. 

BIOLOGIA CELLULARE - Struttura e funzione del citoscheletro - I meccanismi di adesione fra le cellule e la matrice extracellulare - Endocitosi ed esocitosi - La comunicazione tra cellule negli organismi pluricellulari - La trasduzione del segnale e il ruolo centrale svolto dalle proteinchinasi - Ciclo cellulare e suo controllo genico - Mitosi e meiosi - Apoptosi - Il differenziamento cellulare: cellule staminali embrionali e adulte.

GENETICA FORMALE - Riproduzione degli organismi - La variabilità. Ereditarietà - I geni. Fenotipo e genotipo - Diploidia e sessualità. Cromosomi omologhi, alleli e loci, omozigosi ed eterozigosi - Le leggi di Mendel - Alleli wild-type, mutati e multipli, dominanza e recessività - Integrazioni alle leggi di Mendel: epistasi, penetranza ed espressività - Cromosomi del sesso: determinazione cromosomica del sesso - Costruzione ed utilizzo degli alberi genealogici in medicina - Inattivazione del cromosoma X. Implicazioni nella manifestazione di sindromi e di malattie genetiche - Test cross ed eredità di geni localizzati su cromosomi diversi - Crossing-over e conseguenze genetiche - Calcolo delle frequenze di ricombinazione e costruzione di mappe genetiche - Principi e conseguenze dell’ereditarietà mitocondriale e dell’imprinting genomico - Esempi di ereditarietà monofattoriale: sistema ABO, Rh, daltonismo - Ereditarietà multifattoriale e genetica quantitativa - Caratteri con effetto soglia ed ereditabilità - Genetica di popolazione ed equilibrio di Hardy-Weinberg 

CITOGENETICA - Metodologie per l’analisi cromosomica - Il cariotipo umano normale - Mutazioni cromosomiche e genomiche e loro effetto meiotico e fenotipico - Delezioni, inversioni, duplicazioni, traslocazioni e non-disgiunzioni - Sindromi di Turner e Klinefelter, Sindrome di Down - Mutazioni cromosomiche e leucemie: Philadelphia e Burkitt - Mutazioni germinali, somatiche e mosaicismo

GENETICA MOLECOLARE - Relazione tra contenuto in DNA e complessità degli organismi - Il compattamento del DNA nel nucleo delle cellule eucariotiche - Differenze strutturali tra geni procariotici e geni eucariotici - Organizzazione del genoma nei procarioti e negli eucarioti. Caratteristiche del genoma umano - La mutazione genica a livello molecolare. Meccanismi d’insorgenza - Conseguenze delle mutazioni sul prodotto genico - Esempi di mutazioni autosomiche e Xlinked, recessive e dominanti - Mutazioni a carico dei geni mitocondriali - Instabilità genomica - I polimorfismi del DNA e il loro uso come marcatori genetici - Elementi di biologia dello sviluppo - L’immunogenetica. La generazione della diversità anticorpale - La genetica del cancro: i geni che contribuiscono all’insorgenza del cancro (Rb1, WT1 e p53) - Strategie di diagnosi di malattie genetiche (diretta ed indiretta) - Applicazioni presenti e future del “Progetto genoma umano” - Terapia genica: introduzione ed esempi

Prerequisiti

Scienze di base (chimica e fisica)

Modalità didattica

Lezioni frontali, discussioni di gruppo, esercitazioni

Materiale didattico

Alberts and Johnson. Molecular biology of the cell. Sixth edition. Garland Science, 2014; H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell. Molecular cell biology, Freeman, 2016;Thompson & Thompson Genetics in Medicine, 8e, 2015; iGenetics: Pearson New International Edition: A Molecular Approach. Pearson, 2014

Periodo di erogazione dell'insegnamento

annuale

Modalità di verifica del profitto e valutazione

Esame scritto con quiz a risposta multipla (30% della votazione finale)

Colloquio orale sugli argomenti svolti durante il corso

Relazione su argomenti di approfondimento non trattati a lezione (parte del programma)

Orario di ricevimento

su appuntamento

Export

Aims

The course will provide the essential theoretical knowledge of biology and genetics, also focusing on the possible future application in the medical field. The subjects of the course will provide the necessary knowledge to understand the vital processes, both on the cellular and molecular level, as well as the laws of heredity and the processes involved in the generation of phenotypic diversity. The acquired knowledge will contribute to better understand the processes involved in normal and pathological situations.


Contents

Structure and function of the most important cellular macromolecules; DNA duplication and repair mechanisms; transcription and RNA processing; translation and protein sorting; molecular and cellular mechanisms responsible for gene expression and its regulation, analyzing epigenetic mechanisms, transcriptional and post-transcriptional regulation; signal transduction pathways; molecular and cellular mechanisms which control the cell cycle, cellular growth and differentiation as well as cell-to-cell interactions; basic concepts of heredity and the transmission patterns of inherited traits; mechanisms which can generate phenotypic variants in men; methodologies used in genetic analysis; most important biotechnological applications in medicine (gene-based and cell-based therapy).

Detailed program

GENERAL BIOLOGY – Classification of living organisms – Structure od prokaryotic and eukaryotic cells – Viruses, classification, lytic and lisogen cycle.

MOLECULAR BIOLOGY. Chemical composition and molecular organization of the cell – water, carbohydrates, lipids, proteins and nucleic acids. Identification of the chemical compound carrying the genetic information – Molecular basis of inheritance – DNA replication. Telomerases – Mechanisms of DNA repair. Correlation with human diseases, aging and cancer. - RNA, structure and function – Transcription and RNA maturation – The genetic code, and its biological implication (redundancy, frameshift) – Translation – Protein sorting – Gene expression regulation in prokaryotes and eukaryotes – Molecular genetic tools (restriction enzymes, vectors, Southern blotting, PCR, sequencing, microarrays). Molecular cloning.

CELL BIOLOGY – Structure and function of the cytoskeleton – Cell adhesion mechanisms – Endocytosis and Exocytosis – Cell-to-cell communication in complex organisms – Signal transduction and the role of protein kinases – Cell cycle and its regulatory mechanisms. _ Mytosis and Meiosis – Apoptosis – Cell differentiation processes: embrional and adult stem cells.

GENETICS – Human reproduction – Genetic variability – Inheritance – Genes: genotype and phenotype – Diploidy and reproduction. Honologous chromosomes, alleles and loci, homozygosity and heterozygosity – Mendel's laws – Alleles: wild-type, mutated and multiple ones, dominance and recessivity – Mendel's law's implementation: epistasis, penetrance and expressivity – Sex chromosomes. Sex determination – How to build and analyze a family tree – Chromosome X inactivation. Its implication in the phenotipic manifestations of genetic diseases – Test cross and inheritance of  genes localized on  different chromosomes – Crossing over and its genetic consequences – Recombination frequencies calculation and genetic maps – Principles and consequences of mytochondial inheritance and genomic imprinting – Examples of monogenic inheritance: blood groups (AB0, Rh), color blindness – Multigenic inheritance and quantitative genetics – Characters showing a treshold effect – Multifactorial disorders – Population genetics and Hardy-Weinberg equilibrium.

CYTOGENETICS – Methods for chromosome analysis – Normal human caryotype – Chromosomic and genomic mutations and their effect on meiosis and phenotype – Deletions, inversions, duplications, translocations and non-disjunctions – Down's, Turner's and Klinefelter's syndrome – Chromosomal mutations and leukemia: Philadelphia chromosome and Burkitt's lymphoma – Germinal and somatic mutations, mosaicism.

MOLECULAR GENETICS: Relationship between DNA content and organism complexity – DNA assembly in the nucleus of eukaryotic cells – Structural differences between prokaryotic and eukaryotic genes – Genome organization in prokaryotic and eukaryotic cells. Characteristics of human genome – Gene mutations: development mechanisms – Mutation consequences on gene products – Examples of autosomic domint and recessive mutations, as well as X-linked ones – Mytochondrial gene mutations – Genomic instability - DNA plymorphisms and their use as genetic markers –  - Elements of developmental biology – Immunogenetics. Generation of antibody diversity - Cancer genetics. Oncogenes and tumor suppressor genes (Rb1, WT1 and p53) – Stategies for the diagnosis of genetic diseases (direct and indirect) – The human genome project: future implications – Gene therapy: general concepts and applications.

Prerequisites

Basic sciences (chemistry, physics)

Teaching form

Lectures, group discussion, practical sessions

Textbook and teaching resource

Alberts and Johnson. Molecular biology of the cell. Sixth edition. Garland Science, 2014; H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell. Molecular cell biology, Freeman, 2016;Thompson & Thompson Genetics in Medicine, 8e, 2015; iGenetics: Pearson New International Edition: A Molecular Approach. Pearson, 2014

Semester

first and second semester

Assessment method

Written exam with multiple choices quiz (30% of the final mark)

Oral examination on the subjects taught during the lectures

Discussion on further subjects (part of the program) not exhaustively discussed in class


Office hours

by appointment

Enter

Key information

ECTS
11
Term
Annual
Activity type
Mandatory
Course Length (Hours)
120
Degree Course Type
6-year single cycle Master Degree

Staff

    Teacher

  • DB
    Donatella Barisani
  • MI
    Martino Introna

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Self enrolment (Student)

You are currently using guest access (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics