- Medicine and Surgery
- Single Cycle Master Degree (6 years)
- Medicine and Surgery [H4102D]
- Courses
- A.A. 2020-2021
- 1st year
- Genetics I
- Summary
Course Syllabus
Obiettivi
Il corso
fornisce allo studente le conoscenze teoriche essenziali della genetica, nella
prospettiva della loro successiva applicazione professionale in campo medico.
Gli argomenti del Corso costituiscono gli strumenti necessari alla comprensione
delle leggi alla base dell’ ereditarietà dei caratteri e dei processi coinvolti
nella generazione della diversità fenotipica. Le nozioni acquisite
contribuiscono alla comprensione dei processi alla base di condizioni normali e
patologiche.
Contenuti sintetici
Basi
molecolari dell’espressione e della regolazione dell’informazione genica, con
analisi dei meccanismi epigenetici; concetti e modalità di trasmissione
dei caratteri ereditari; meccanismi che possono dar luogo a varianti
fenotipiche nell’uomo.
Programma esteso
Prerequisiti
Scienze di base (chimica e
fisica)
Modalità didattica
Lezioni frontali nel rispetto del distanziamento sociale. Le lezioni saranno videoregistrate e rese disponibili sul sito elearning dell'Ateneo
Materiale didattico
Thompson & Thompson
Genetics in Medicine, 8e, 2015; iGenetics: Pearson New International Edition: A
Molecular Approach. Pearson,
2014
Periodo di erogazione dell'insegnamento
Secondo semestre
Modalità di verifica del profitto e valutazione
La valutazione del modulo farà parte dell'esame finale del corso integrato che si svolgerà con un colloquio
orale sugli argomenti svolti durante il corso e/o parte del programma. L'esame sarà condotto se possibile in presenza, altrimenti in remoto tramite la piattaforma di Ateneo.
Orario di ricevimento
su appuntamento
Aims
The course will provide the
essential theoretical knowledge of biology and genetics, also focusing on the
possible future application in the medical field. The subjects of the course
will provide the necessary knowledge to understand the vital processes, both on
the cellular and molecular level, as well as the laws of heredity and the
processes involved in the generation of phenotypic diversity. The acquired
knowledge will contribute to better understand the processes involved in normal
and pathological situations.
Contents
molecular and cellular
mechanisms responsible for gene expression and its regulation, analyzing
epigenetic mechanisms, basic concepts of heredity and the transmission
patterns of inherited traits; mechanisms which can generate phenotypic variants
in men.
Detailed program
GENETICS – Human reproduction
– Genetic variability – Inheritance – Genes: genotype and phenotype – Diploidy
and reproduction. Honologous chromosomes, alleles and loci, homozygosity and
heterozygosity – Mendel's laws – Alleles: wild-type, mutated and multiple ones,
dominance and recessivity – Mendel's law's implementation: epistasis,
penetrance and expressivity – Sex chromosomes. Sex determination – How to build
and analyze a family tree – Chromosome X inactivation. Its implication in the
phenotipic manifestations of genetic diseases – Test cross and inheritance
of genes localized on different chromosomes – Crossing over and its
genetic consequences – Recombination frequencies calculation and genetic maps –
Principles and consequences of mytochondial inheritance and genomic imprinting
– Examples of monogenic inheritance: blood groups (AB0, Rh), color blindness –
Multigenic inheritance and quantitative genetics – Characters showing a
treshold effect – Multifactorial disorders – Population genetics and
Hardy-Weinberg equilibrium. CYTOGENETICS – Methods
for chromosome analysis – Normal human caryotype – Chromosomic and genomic
mutations and their effect on meiosis and phenotype – Deletions, inversions,
duplications, translocations and non-disjunctions – Down's, Turner's and
Klinefelter's syndrome – Chromosomal mutations and leukemia: Philadelphia
chromosome and Burkitt's lymphoma – Germinal and somatic mutations,
mosaicism. MOLECULAR GENETICS: Relationship between DNA content and
organism complexity – DNA assembly in the nucleus of eukaryotic cells –
Structural differences between prokaryotic and eukaryotic genes – Genome
organization in prokaryotic and eukaryotic cells. Characteristics of human
genome – Gene mutations: development mechanisms – Mutation consequences on gene
products – Examples of autosomic domint and recessive mutations, as well as
X-linked ones – Mytochondrial gene mutations – Genomic instability - DNA
plymorphisms and their use as genetic markers – - Elements of
developmental biology – Immunogenetics. Generation of antibody diversity - The
human genome project: future implications
Prerequisites
Basic sciences (chemistry,
physics)
Teaching form
Textbook and teaching resource
Thompson & Thompson
Genetics in Medicine, 8e, 2015; iGenetics: Pearson New International Edition: A
Molecular Approach. Pearson,
2014
Semester
Second semester
Assessment method
Office hours
by appointment