Course Syllabus
Area di apprendimento
Conoscenze di metodologia della ricerca qualitativa e quantitativa
Obiettivi formativi
Conoscenza e comprensione
- Statistica descrittiva
- Inferenza statistica
- Statistica inferenziale mono e bivariata
Applicare conoscenza e comprensione
- Utilizzo di SPSS (o di altro software) per l’analisi dei dati
- Capacità di selezionare la tecniche di analisi dei dati più adeguata in determinato contesto
- Riportare risultati ottenuti in modo conforme agli standard prevalentemente utilizzato in ambito psicologico
Contenuti sintetici
Il corso fornisce le basi della statistica descrittiva e inferenziale e propone alcune tecniche di analisi dei dati. Introduce anche all’uso del software statistico SPSS (o di un altro software statistico).
Programma esteso
- Statistica descrittiva: scale di misura, statistiche della tendenza centrale e di variabilità, misure standardizzate;
- Rappresentazioni grafiche riassuntive dei dati e per l’esplorazione dei dati
- Introduzione alla probabilità
- Metodi statistici inferenziali di base: distribuzione campionaria, verifica di ipotesi, intervalli di confidenza
- Tecniche parametriche: t-test per la differenza di medie (campione singolo, campioni indipendenti, campioni appaiati); correlazione lineare (Pearson)
- Tecniche non parametriche: Test del chi-quadro (equiprobabilità, indipendenza, test di un modello), correlazione lineare (Spearman)
- Ampiezza dell’effetto e suo utilizzo
- Introduzione al concetto di analisi della potenza
Prerequisiti
Essendo un corso obbligatorio del I anno, gli unici
prerequisiti sono quelli della conoscenza di base della matematica/algebra e
dell’uso di un computer. Eventuali lacune specifiche verranno risolte durante
le lezioni.
Metodi didattici
Lezioni frontali in italiano generalmente suddivise in blocchi logici corrispondenti ai capitoli del libro di testo. All’interno dei blocchi, tramite esercizi in classe, verrà anche affrontato l’uso del software statistico. Per alcuni blocchi potrebbero essere predisposti (sulla piattaforma elearning) delle auto-valutazioni.
In contemporanea alle lezioni frontale, si svolgeranno i “laboratori software”: delle vere e proprie esercitazioni in cui gli studenti dovranno affrontare concretamente il/i software statistici utilizzabili per migliorare il proprio apprendimento.Nel periodo di emergenza COVID-19 le modalità didattiche verranno definite e aggiornate sulla base delle regole di Ateneo.
Modalità di verifica dell'apprendimento
Nel periodo di emergenza COVID-19 le modalità di verifica dell'apprendimento verranno definite e aggiornate sulla base delle regole di Ateneo.
L’esame è scritto e si compone di domande a scelta multipla, domande aperte ed esercizi di analisi statistica, tramite l’uso di SPSS (o un altro software statistico) su un file dati assegnato all'inizio dell’esame.
Le domande sono volte ad accertare l’effettiva acquisizione delle conoscenze teoriche, sia della capacità di svolgere analisi statistiche (con e senza l’ausilio di software statistici) ed interpretare i risultati di tali analisi.
Non sono previste prove in itinere, sostituite da una simulazione dell’esame.
Per gli studenti che lo richiedano, è previsto anche un colloquio orale, su tutti gli argomenti del corso, che può portare a un aumento o decremento fino a un massimo di 2 punti sul punteggio dell’esame scritto.
Testi di riferimento
- Slide delle lezioni
- Aron, A., Coups, E. J., & Aron, E. J. (2018). Fondamenti di statistica. Introduzione alla ricerca in psicologia. Milano: Pearson. [capp. 1 a 8, 9 parziale, 11, 13, 14]
- Vanin, L. (2014). SPSS pratico. Configurazioni, output e interpretazioni a colpo d’occhio. Milano: Cortina.
- Barbaranelli, C., D’Olimpo, F. (2007). Analisi dei dati con SPSS. Vol. I: Le analisi di base. Milano: LED.
- Un qualunque libro (anche in inglese) su SPSS (versioni dalla 16 in avanti) purché includa gli argomenti del corso (disponibili in Biblioteca).
Learning area
Knowledge about qualitative and quantitative research methodology
Learning objectives
Knowledge and understanding
- Descriptive statistics
- Inferential statistics
- Univariate and bivariate statistical inference
Applying knowledge and understanding
- Using SPSS (or another statistical software) for data analysis
- Ability to choose the most adequate data analysis technique for the context
- How to report results of statistical analyses in conformity to the prevailing standards in psychology.
Contents
This course aims at providing the basic knowledge
on descriptive and inferential statistics. Furthermore, it addresses some
techniques of statistical analysis and introduces the use of the SPSS or of
another statistical software
Detailed program
- Descriptive statistics: measurement scales, central tendency and variability indices, standardized measures;
- Graphical synthesis and graphical exploration of the data;
- Introduction to probability;
- Basic inferential statistics: sampling distribution, hypothesis testing, confidence intervals;
- Parametric techniques: t-test for the difference between means (single sample, independent samples, paired samples); linear correlation (Pearson’s)
- Non-parametric techniques: Chi-squared test (equally-probable categories, independence, test of a model), correlation (Spearman)
- Effect size and its use
- Introduction to the concept of power analysis
Prerequisites
As this is a compulsory first-year course, the only prerequisites are basic knowledge of mathematics/algebra and computer use. Possible specific lacunae will be handled during the lessons.
Teaching methods
Lectures will be in Italian split into blocks corresponding to the chapters of the coursebook. The statistical software will discuss within each block through exercises in class. Self-evaluation exercises may be available for some blocks (on the e-learning platform).
In parallel to the lectures, “software laboratories” will be available, during which students will use the statistical software(s) to enhance their learning.
Lessons will be held in presence or through online video lessons, according to the University’s regulations regarding the COVID-19 emergency situation. In both cases, all lessons will be video recorded and made available to the students.
Assessment methods
The exam is in written form and consists of exercises of statistical analysis, open questions and, multiple-choice questions. SPSS (or another statistical software) will be used with a data file provided at the beginning of the examination. The questions aim to ascertain the active acquisition of the theoretical knowledge and of the ability to execute statistical analyses (with and without statistical software) and understand the results.
During the Covid-19 emergency, exams will be conducted according to the University’s regulations regarding the COVID-19 emergency situation.
There will be no mid-term assessments, but instead, there will be a simulation of the exam.
Interested students can also request an oral supplement, on all topics of the course. This oral integration can increase or decrease the mark of the written exam up to 2 thirtieths.
Textbooks and Reading Materials
- Slides (in Italian)
- Aron, A., Coups, E. J., & Aron, E. J. (2018). Fondamenti di statistica. Introduzione alla ricerca in psicologia. Milano: Pearson. [capp. 1 a 8, 9 parziale, 11, 13, 14]
- Vanin, L. (2014). SPSS pratico. Configurazioni, output e interpretazioni a colpo d’occhio. Milano: Cortina.
- Barbaranelli, C., D’Olimpo, F. (2007). Analisi dei dati con SPSS. Vol. I: Le analisi di base. Milano: LED.
- Any book (in English) on SPSS (versions from 16 onwards) as long as it includes the course topics (available in the University Library).