Course Syllabus
Obiettivi
Il corso è dedicato a
fornire allo studente i fondamenti della fisica e della tecnologia dei moderni
dispositivi a semiconduttori (diodi e transitori) nonché dispositivi emergenti
e innovativi per l'elaborazione classica e quantistica (convenzionale e non
convenzionale) dell’informazione, nonché per applicazioni in neuroelettronica.
Oltre alle lezioni frontali, il corso offre due attività di laboratorio
dedicate alla caratterizzazione e simulazione (basate su Sentaurus) delle
caratteristiche funzionali dei dispositivi.
Contenuti sintetici
Programma esteso
LECTURES
1. p-n junction: unpolarized and polarized junction. Current-Voltage characteristic in ideal and real junctions. The junction capacitance. Breakdown. Models. Solar cells. PiN diodes. (PTED1-PTED9)
2. Bipolar Transistors (BJT): Currents. Active mode. Gain. (PTED10-PTED13)
3. Metal-Semiconductor Contact: Ohmic and Schottky contacts. Schottky diode. Characteristic I-V. Interface states. (PTED14)
4. Metal Oxide Semiconductor: band structures. MOS capacitor. Accumulation, depletion and inversion. Capacitance. Effect of interface states. The MOSFET. Evolution of the MOSFET: SOI MOSFET, high mobility substrates, high-k, quantum effects in the inversion channel, the leakage currents. (PTED15-PTED22)
5. Non-volatile memory devices: FLASH memories, nanocrystals, PCM, ReRAM. (PTED23)
6. Electronic devices based on heterojunction: HBT, HEMT. (PTED24)
7. Electronic devices based on quantum effects: tunnel diodes, Tunneling-FET, low-dimensional devices, Fin-FET, single-electron transistor (SET), Coulomb blockade, spin blockade. (PTED25)
8. Emerging spintronic devices: transistors based on the transport of spin, magnetic tunnel junctions. (PTED26)
9. Solid state devices for quantum computing: introduction to quantum computing, qubit, spin in semiconductors (manipulation, entanglement, detection). (PTED27)
10. Neuroelectronic: devices for stimulation / sense neuronal activity, devices for emulating the synaptic and neuronal activity in neuromorphic circuits. (PTED28)
LABORATORY
1. Introduction to the experimental techniques and set-ups (LPTEDE1)
2. Semiconductor-metal contacts: ohmic and Schottky contacts. Zener diode. (LPTEDE2)
3. BJT: I-V (LPTEDE3)
4. MOS: C-V (doping profile, defects, high-k -EOT) (LPTEDE4)
5. MOSFET: I-V, C-V (LPTEDE5)
6. Introduction to TCAD (LPTEDS1)
7. Surviving to Linux (LPTEDS2)
8. Building up the device: SSE (LPTEDS3)
9. Practice: Zener diode / MOSFET / Bipolar (LPTEDS4)
10. Hints on discretization (LPTEDS5)
11. Meshing the device: SSE/SNMESH (LPTEDS6)
12. Practice: Zener diode / MOSFET / Bipolar (LPTEDS7)
13. Solving the device: SDevice 3h (LPTEDS8)
14. Visualizing results: SVisual 1h (LPTEDS9)
15. Practice: simulated device characterization (LPTEDS10)
Prerequisiti
Solid
State Physics and Physics and Semiconductors.
Modalità didattica
Il corso consiste in lezioni frontali e due attività di laboratorio dedicate alla simulazione ed alla caratterizzazione elettrica dei dispositivi.
Materiale didattico
- R.F. Pierret, Semiconductor Device Fundamentals, Addison Wesley
- M.S. Sze, Semiconductor devices, Physics and Technology, J. Wiley
- C. Papadopoulos, Solid State Electronic Devices: An Introduction, Springer .
- Notes from the teachers
- Slides of the lectures on the e-learning platform
Periodo di erogazione dell'insegnamento
I Semestre II anno
Modalità di verifica del profitto e valutazione
Gli studenti devono dimostrare in un colloquio di sapere come i principi fondamentali della fisica dei semiconduttori possono essere utilizzati
nella progettazione e sviluppo di dispositivi elettronici con funzioni specifiche, e come le funzioni del dispositivo possono essere simulate ed analizzate sperimentalmente in laboratorio con approcci adeguati.La prova orale, si compone di due, o tre domande, su parti diverse del corso, dove si richiede che l'illustrazione dell'argomento sia accompagnata da schizzi, equazioni e dati numerici. Lo studente sceglie il primo argomento e deve consegnare almeno 5 giorno prima dell'esame la relazione sulle attività di laboratorio.
Orario di ricevimento
Su appuntamento.
Aims
The course is devoted to provide the student with the fundamentals of the physics and technology of modern semiconductors devices (diodes and transitors) as well emerging and innovative devices for classical (conventional and unconventional) and quantum information processing, as well as for neuroelectronics applications . In addition to lectures the course offers two laboratory activities dedicated to state of the art electrical characterization and simulation (based on Sentaurus) of the devices.
Contents
Physics of conventional electronic devices (junctions, transistors), of ultrascaled nanoelectronic devices (single electron and single atom transistors), and of emerging and novel nanoelectronic and spintronic devices for logic and memory applications, and for quantum information processing. Nanoelectronic devices (EOS, EOSFETs, Memristors) for neuroelectronic applications will be also discussed.
Detailed program
LECTURES
1. p-n junction: unpolarized and polarized junction. Current-Voltage characteristic in ideal and real junctions. The junction capacitance. Breakdown. Models. Solar cells. PiN diodes. (PTED1-PTED9)
2. Bipolar Transistors (BJT): Currents. Active mode. Gain. (PTED10-PTED13)
3. Metal-Semiconductor Contact: Ohmic and Schottky contacts. Schottky diode. Characteristic I-V. Interface states. (PTED14)
4. Metal Oxide Semiconductor: band structures. MOS capacitor. Accumulation, depletion and inversion. Capacitance. Effect of interface states. The MOSFET. Evolution of the MOSFET: SOI MOSFET, high mobility substrates, high-k, quantum effects in the inversion channel, the leakage currents. (PTED15-PTED22)
5. Non-volatile memory devices: FLASH memories, nanocrystals, PCM, ReRAM. (PTED23)
6. Electronic devices based on heterojunction: HBT, HEMT. (PTED24)
7. Electronic devices based on quantum effects: tunnel diodes, Tunneling-FET, low-dimensional devices, Fin-FET, single-electron transistor (SET), Coulomb blockade, spin blockade. (PTED25)
8. Emerging spintronic devices: transistors based on the transport of spin, magnetic tunnel junctions. (PTED26)
9. Solid state devices for quantum computing: introduction to quantum computing, qubit, spin in semiconductors (manipulation, entanglement, detection). (PTED27)
10. Neuroelectronic: devices for stimulation / sense neuronal activity, devices for emulating the synaptic and neuronal activity in neuromorphic circuits. (PTED28)
LABORATORY
1. Introduction to the experimental techniques and set-ups (LPTEDE1)
2. Semiconductor-metal contacts: ohmic and Schottky contacts. Zener diode. (LPTEDE2)
3. BJT: I-V (LPTEDE3)
4. MOS: C-V (doping profile, defects, high-k -EOT) (LPTEDE4)
5. MOSFET: I-V, C-V (LPTEDE5)
6. Introduction to TCAD (LPTEDS1)
7. Surviving to Linux (LPTEDS2)
8. Building up the device: SSE (LPTEDS3)
9. Practice: Zener diode / MOSFET / Bipolar (LPTEDS4)
10. Hints on discretization (LPTEDS5)
11. Meshing the device: SSE/SNMESH (LPTEDS6)
12. Practice: Zener diode / MOSFET / Bipolar (LPTEDS7)
13. Solving the device: SDevice 3h (LPTEDS8)
14. Visualizing results: SVisual 1h (LPTEDS9)
15. Practice: simulated device characterization (LPTEDS10)
Prerequisites
Solid State Physics and Physics and Semiconductors.
Teaching form
The course comprises lectures in the classroom and a laboratory part dedicated to electrical characterization and simulation.
Textbook and teaching resource
- R.F. Pierret, Semiconductor Device Fundamentals, Addison Wesley
- M.S. Sze, Semiconductor devices, Physics and Technology, J. Wiley
- C. Papadopoulos, Solid State Electronic Devices: An Introduction, Springer .
- Notes from the teachers
- Slides of the lectures on the e-learning platform
Semester
1st Semester II year
Assessment method
Students
must demonstrate in an interview to know how the main principles of the physics
of semiconductors can be used in the design and development of electronic
devices with specific functions, and how the device functions can be modelled
and analysed in the laboratory with suitable approaches. The oral examination, consists of two, or three questions on different
parts of the course, where the illustration of the topic is requested to
be accompanied by sketches, equations and numerical data. The student should choose the first question (topic). At least 5 days before the exam the student must submit the report on the laboratory activity.
Office hours
By appointment.
Key information
Staff
-
Marco Fanciulli
-
Lucia Zullino