- Modelli Probabilistici per le Decisioni
- Introduzione
Syllabus del corso
Obiettivi
Il corso fornirà i principali concetti e strumenti operativi, basati su metodi computazionali, per rappresentare il processo di apprendimento e le tecniche di ragionamento in condizioni di incertezza. Gli studenti acquisiranno abilità nell'utilizzare i concetti e i metodi appresi per risolvere problemi decisionali. In particolare gli studenti acquisiranno le seguenti competenze: identificazione delle relazioni tra parametri usando modelli probabilistici, costruzione di modelli decisionali, identificazione e valutazione del modello decisionale.
Contenuti sintetici
Rappresentazione dell’incertezza nei problemi di decisione
Rappresentazione della conoscenza in ambienti incerti
Reti Bayesiane Incertezza e scelte razionali
Il ragionamento probabilistico nel tempo
Inferenza nei modelli dinamici
Programma esteso
"Representing uncertainty in decision problems Basic notions of probability theory Bayes rule and its application". Chapter 13.
2.1 "Knowledge representation in an uncertain domain Bayesian network semantics; Efficient representation of conditional probabilities". Chapter 14 (14.1, 14.2, 14.3).
2.2 D-separation (materiale fornito dal docente)
2.3 Generazione numeri psudo-casuali per campionamento (materiale fornito dal docente)
3. "Exact and approximate inference in Bayesian Networks". Chapter 14 (14.4, 14.5)
4. "Markov Chains" (materiale fornito dal docente)
5. Hidden Markov Models; Forecasting, Filtering and Smoothing ". Chapter 15 (15.1, 15.2 15.3).
Prerequisiti
Nozioni di base di: probabilità, statistica, algebra lineare
Modalità didattica
Lezioni, esercitazioni in aula, laboratorio
Materiale didattico
S. Russel, P. Norvig. “Intelligenza Artificiale: Un Approccio Moderno”, Prentice Hall, III Edizione
papers & slides
Periodo di erogazione dell'insegnamento
Secondo Semestre
Modalità di verifica del profitto e valutazione
Sono possibili due modalità d'esame:
1) Modalità consigliata a chi segue il corso:
Assignments + Esame scritto + orale facoltativo (4 domande ognuna con valutazione -1 o +1)
Gli Assignments devono essere consegnati entro e non oltre le date previste durante l'erogazione dell'insegnamento e rimarranno valido solo per gli appelli di giugno e luglio.
2) Modalità consigliata a chi non può seguire il corso:
Esame Scritto + orale facoltativo
Maggiori dettagli sono disponibili nella sezione introduttiva del corso.
Orario di ricevimento
Su appuntamento
Per semplici domande, gli studenti possono inviare un'email sia al docente che all'esercitatore utilizzando come oggetto: Domanda MPD-2122
Aims
The course will provide the main concepts and operative tools, based on computational
methods, for representing the learning process and the reasoning techniques in uncertain
domains. Students will gain the ability of using the concepts and methods learned for
solving practical operational decision problems. In particular, they will acquire the
following abilities: to identify relations between parameters by using probabilistic models,
to build models for decision making, to evaluate and find the problem solutions.
Contents
Representing uncertainty in decision problems
Knowledge representation in uncertain domains
Bayesian Networks
Pseudo-number generation for sampling
Inference on BN
Probabilistic Reasoning over time
Markov Chains
Hidden Markov Models
Inference in dynamic models
Detailed program
"Representing uncertainty in decision problems Basic notions of probability theory Bayes rule and its application". Chapter 13.
2.1 "Knowledge representation in an uncertain domain Bayesian network semantics; Efficient representation of conditional probabilities". Chapter 14 (14.1, 14.2, 14.3).
2.2 D-separation (papers & slides)
2.3 Pseudo-number generation for sampling (papers & slides)
3. "Exact and approximate inference in Bayesian Networks". Chapter 14 (14.4, 14.5)
4. "Markov Chains" (papers & slides)
5. Hidden Markov Models; Forecasting, Filtering and Smoothing ". Chapter 15 (15.1, 15.2 15.3).
Prerequisites
Basic notions of: probability, statistics, linear algebra
The course is in Italian.
Teaching form
Lectures, classroom exercises, lab exercises
Textbook and teaching resource
S. Russel, P. Norvig. “Artificial Intelligence: A Modern Approach", Prentice Hall, III Edizione
Semester
Second Semester
Assessment method
For more details refer to the document in the introductory section of the course.
Office hours
By appointment
For quick questions, you can send an email to both the instructor and assistant with object : Question MPD - 2122.