Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • More
Listen to this page using ReadSpeaker
 Log in
e-Learning - UNIMIB
Home
Percorso della pagina
  1. Economics
  2. Master Degree
  3. Economia del Turismo [F7602M - F7601M]
  4. Courses
  5. A.A. 2021-2022
  6. 2nd year
  1. Statistical Methods for the Territorial and Social Environment
  2. Summary
Unità didattica Course full name
Statistical Methods for the Territorial and Social Environment
Course ID number
2122-2-F7601M007-F7601M017M
Course summary SYLLABUS

Blocks

Back to Statistical Methods for Tourism II

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi formativi

L'obiettivo dell'insegnamento è di dare agli studenti conoscenze statistiche progredite necessarie per effettuare autonomamente l'analisi quantitativa e l'interpretazione dei risultati di elaborazioni riguardanti i fenomeni turistici. 

Contenuti sintetici

Durante il corso di Statistica dell’ambiente fisico e sociale verranno presentati i metodi di analisi statistica multivariata con particolare attenzione a quelli maggiormente utilizzati per l’analisi dell’ambiente inteso sia come territorio sia come quello costituito dalle condizioni di vita e di lavoro, dal livello di reddito, dal grado d'istruzione e dalla comunità di cui un individuo fa parte. Nel corso si illustrerà l’utilizzo del software SPSS per la soluzione di problemi reali

Programma esteso

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition)

 

Ch1: Introduction (pag. 1-7)

-     Introduction to Statistical Methodology

-     Descriptive Statistics and Inferential Statistics

-     The Role of Computers In statistics

 

Ch2: Sampling and Measurement (pag. 11-21)

-     Variables and their measurement

-     Randomization

-     Sampling Variability and Potential Bias

 

Ch 3: Descriptive Statistics (pag. 31-59)

-     Describing Data with Tables and Graphs

-     Describing the Center of the Data

-     Describing Variability of the Data

-     Measures of Position

-     Bivariate Descriptive Statistics

-     Sample Statistics and Population Parameters

 

Ch8: Analyzing Association between Categorical Variables (pag. 221-239)

-     Contingency tables

-     Chi-Squared Test of Independence

-     Residuals: Detecting the Pattern of Association

-     Measuring Association In Contingency Tables

 

Ch9: Linear regression and correlation (pag.255-283)

-     Linear Relationships

-     Least Squares Prediction Equation

-     The Linear Regression Model

-     Measuring Linear Association: the Correlation

-     Inference for the Slope and Correlation

 

Ch10: Introduction to multivariate relationship (pag. 301-313)

-     Association and Causality

-     Controlling for Other Variables

-     Types of Multivariate Relationships

 

Ch11: Multiple Regression and Correlation (pag. 321-340;345-355)

-     The Multiple Regression Model

-     Example with Multiple Regression Computer Output

-     Multiple Correlation and R2

-     Inference for Multiple Regression Coefficients

-     Comparing Regression Models

-     Partial Correlation

-     Standardized Regression Coefficients

 

Combining Regression and ANOVA: Quantitative and Categorical Predictors (pag. 416-419)

- Regression with Quantitative and Categorical Predictors

Prerequisiti

Conoscenza della statistica descrittiva univariata


Metodi didattici

Nel periodo di emergenza Covid-19 le lezioni si svolgeranno da remoto asincrono con eventi in videoconferenza sincrona.
In periodo di non emergenza le lezioni saranno frontali


Modalità di verifica dell'apprendimento

Nel periodo di emergenza Covid-19 gli esami saranno solo telematici. Verranno svolti utilizzando la piattaforma WebEx e nella pagina e-learning dell'insegnamento verrà riportato un link pubblico per l'accesso all'esame di possibili spettatori virtuali.
La verifica dell'apprendimento comprende una prova scritta e un lavoro di gruppo. La prova scritta valuterà le conoscenza teorica degli argomenti. Nel lavoro di gruppo gli studenti dovranno dimostrare la conoscenza del software SPSS.

Testi di riferimento

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition).


Periodo di erogazione dell’insegnamento

Secondo semestre

Lingua di insegnamento

Inglese

Export

Learning objectives

The course will give to the students the  advanced statistical knowledge necessary to independently perform quantitative analysis and interpretation of the results concerning the tourism phenomena. 

Contents

During the course of the Territorial and social statistics will be presented the methods of multivariate statistical analysis with special focus on those most commonly used for the analysis , where for the environment is understood as a territory and as the one constituted by the conditions of life and work, from income level, educational level and the community to which an individual belongs. The course will illustrate the use of the SPSS software for the solution of real problems.


Detailed program

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition)

 

Ch1: Introduction (pag. 1-7)

-     Introduction to Statistical Methodology

-     Descriptive Statistics and Inferential Statistics

-     The Role of Computers In statistics

 

Ch2: Sampling and Measurement (pag. 11-21)

-     Variables and their measurement

-     Randomization

-     Sampling Variability and Potential Bias

 

Ch 3: Descriptive Statistics (pag. 31-59)

-     Describing Data with Tables and Graphs

-     Describing the Center of the Data

-     Describing Variability of the Data

-     Measures of Position

-     Bivariate Descriptive Statistics

-     Sample Statistics and Population Parameters

 

Ch8: Analyzing Association between Categorical Variables (pag. 221-239)

-     Contingency tables

-     Chi-Squared Test of Independence

-     Residuals: Detecting the Pattern of Association

-     Measuring Association In Contingency Tables

 

Ch9: Linear regression and correlation (pag.255-283)

-     Linear Relationships

-     Least Squares Prediction Equation

-     The Linear Regression Model

-     Measuring Linear Association: the Correlation

-     Inference for the Slope and Correlation

 

Ch10: Introduction to multivariate relationship (pag. 301-313)

-     Association and Causality

-     Controlling for Other Variables

-     Types of Multivariate Relationships

 

Ch11: Multiple Regression and Correlation (pag. 321-340;345-355)

-     The Multiple Regression Model

-     Example with Multiple Regression Computer Output

-     Multiple Correlation and R2

-     Inference for Multiple Regression Coefficients

-     Comparing Regression Models

-     Partial Correlation

-     Standardized Regression Coefficients

 

Combining Regression and ANOVA: Quantitative and Categorical Predictors (pag. 416-419)

- Regression with Quantitative and Categorical Predictors

Prerequisites

Univariate descriptive statistics

Teaching methods

During the Covid-19 emergency period, lessons will be held remotely asynchronously with synchronous videoconferencing events.
In the non-emergency period the lessons will be frontal. During the lectures, the topics explained will be dealt with from a theoretical point of view and through empirical cases.
The SPSS software will also be shown.




Assessment methods

In the Covid-19 emergency period, exams will only be online. They will be carried out using the WebEx platform and on the e-learning page of the course there will be a public link for access to the examination of possible virtual spectators.
The assessment includes a written exam and a group work. The written exam  will evaluate the theoretical knowledge of the topics. The group work will evaluate the knowledge of SPSS.

Textbooks and Reading Materials

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition).

Semester

Second semester

Teaching language

English

Enter

Key information

Field of research
SECS-S/05
ECTS
4
Term
Second semester
Activity type
Mandatory
Course Length (Hours)
28
Language
English

Staff

    Teacher

  • MZ
    Mariangela Zenga

Enrolment methods

Manual enrolments
Self enrolment (Student)

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics