- Quantum Materials
- Summary
Course Syllabus
Obiettivi
Contenuti sintetici
Effetti
topologici, Effetto Hall Quantistico intero, Isolanti topologici, metalli di
Weyl, Superconduttività
Programma esteso
- Effetti Topologici
- Fase di Berry
- Effetto Ahronov-Bohm
- Curvatura di Berry
- Quantizzazione topologica della conduttività di Hall
- Isolanti topologici
- Semimetalli di Weyl
- Superconduttività
- Superconduttori di tipo I e II
- Elettrodinamica
- Teoria di Landau Ginzburg
- Effetto Josephson e SQUIDS
- Quantum bits
- Teoria Microscopica della Superconduttività
- Hamiltoniana BCS
- Risposta elettromagnetica
Prerequisiti
elettromagnetismo, meccanica quantistica, fisica dello stato solido
Modalità didattica
Lezioni Frontali
Materiale didattico
Libri
Girvin S.M & Yang K. Modern Condensed Matter Physics – Cambridge University Press
Periodo di erogazione dell'insegnamento
II Semestre
Modalità di verifica del profitto e valutazione
Esame Orale
Orario di ricevimento
alla fine delle lezioni o su appuntamento
Aims
The physical description of the materials is rooted in quantum mechanics, which describes how atoms bond between each other and how electrons interact. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, there are material systems where quantum effects remain evident over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. This course will introduce the electronic properties of quantum materials and examines how its entanglement and topology give rise to a rich variety of quantum states and phases.
Contents
Topological Effects, Integer Quantum Hall Effect, Topological Insulators, Weyl semimetals, Superconductivity
Detailed program
- Topological effects
- Berry phase
- Ahronov-Bohm effect
- Berry Curvature
- Topological quantization of Hall conductivity
- Topological insulators
- Weyl semimetals
- Superconductivity
- Type I and II superconductors
- Electrodynamics
- Theory of Landau Ginzburg
- Josephson effect and SQUIDS
- Quantum bits
- Microscopic theory of superconductivity
- Hamiltonian BCS
- Electromagnetic response
Prerequisites
electromagnetism, quantum mechanics, solid state physics
Teaching form
Lectures
Textbook and teaching resource
Textbook
Girvin S.M & Yang K. Modern Condensed Matter Physics – Cambridge University Press
Semester
II semester
Assessment method
oral examination
Office hours
at the end of the lessons or by appointment