Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Science
  2. Master Degree
  3. Materials Science [F5302Q]
  4. Courses
  5. A.A. 2022-2023
  6. 2nd year
  1. Physics and Technology of Electronic Devices With Laboratory
  2. Summary
Insegnamento Course full name
Physics and Technology of Electronic Devices With Laboratory
Course ID number
2223-2-F5302Q010
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

Il corso è dedicato a fornire allo studente i fondamenti della fisica e della tecnologia dei moderni dispositivi a semiconduttori (diodi e transitori) nonché dispositivi emergenti e innovativi per l'elaborazione classica e quantistica (convenzionale e non convenzionale) dell’informazione, nonché per applicazioni in neuroelettronica. Oltre alle lezioni frontali, il corso offre due attività di laboratorio dedicate alla caratterizzazione e simulazione (basate su Sentaurus) delle caratteristiche funzionali dei dispositivi.



Contenuti sintetici

Fisica dei dispositivi elettronici convenzionali (giunzioni, transistor), dei dispositivi nanoelettronici ultrascalizzati (transistor a singolo elettrone e singolo atomo) e dei dispositivi nanoelettronici e spintronici emergenti e nuovi per applicazioni logiche e di memoria e per l'elaborazione di informazioni quantistiche. Saranno inoltre discussi i dispositivi nanoelettronici (EOS, EOSFET, Memristor) per applicazioni neuroelettroniche

Programma esteso

LECTURES

1. p-n junction: unpolarized and polarized junction. Current-Voltage characteristic in ideal and real junctions. The junction capacitance. Breakdown. Models. Solar cells. PiN diodes. (PTED1-PTED9)

2. Bipolar Transistors (BJT): Currents. Active mode. Gain. (PTED10-PTED13)

3. Metal-Semiconductor Contact: Ohmic and Schottky contacts. Schottky diode. Characteristic I-V. Interface states. (PTED14)

4. Metal Oxide Semiconductor: band structures. MOS capacitor. Accumulation, depletion and inversion. Capacitance. Effect of interface states. The MOSFET. Evolution of the MOSFET: SOI MOSFET, high mobility substrates, high-k, quantum effects in the inversion channel, the leakage currents. (PTED15-PTED22)

5. Non-volatile memory devices: FLASH memories, nanocrystals, PCM, ReRAM. (PTED23)

6. Electronic devices based on heterojunction: HBT, HEMT. (PTED24)

7. Electronic devices based on quantum effects: tunnel diodes, Tunneling-FET, low-dimensional devices, Fin-FET, single-electron transistor (SET), Coulomb blockade, spin blockade. (PTED25)

8. Emerging spintronic devices: transistors based on the transport of spin, magnetic tunnel junctions. (PTED26)

9. Solid state devices for quantum computing: introduction to quantum computing, qubit, spin in semiconductors (manipulation, entanglement, detection). (PTED27)

10. Neuroelectronic: devices for stimulation / sense neuronal activity, devices for emulating the synaptic and neuronal activity in neuromorphic circuits. (PTED28)

LABORATORY

1. Introduction to the experimental techniques and set-ups (LPTEDE1)

2. Semiconductor-metal contacts: ohmic and Schottky contacts. Zener diode. (LPTEDE2)

3. BJT: I-V (LPTEDE3)

4. MOS: C-V (doping profile, defects, high-k -EOT) (LPTEDE4)

5. MOSFET: I-V, C-V (LPTEDE5)

6. Introduction to TCAD (LPTEDS1)

7. Surviving to Linux (LPTEDS2)

8. Building up the device: SSE (LPTEDS3)

9. Practice: Zener diode / MOSFET / Bipolar (LPTEDS4)

10. Hints on discretization (LPTEDS5)

11. Meshing the device: SSE/SNMESH (LPTEDS6)

12. Practice: Zener diode / MOSFET / Bipolar (LPTEDS7)

13. Solving the device: SDevice 3h (LPTEDS8)

14. Visualizing results: SVisual 1h (LPTEDS9)

15. Practice: simulated device characterization (LPTEDS10)

Prerequisiti

Solid State Physics and Physics and Semiconductors.

Modalità didattica

Il corso consiste in lezioni frontali e due attività di laboratorio dedicate alla simulazione ed alla caratterizzazione elettrica dei dispositivi.

Materiale didattico

- R.F. Pierret, Semiconductor Device Fundamentals, Addison Wesley

- M.S. Sze, Semiconductor devices, Physics and Technology, J. Wiley

- C. Papadopoulos, Solid State Electronic Devices: An Introduction, Springer .

- Notes from the teachers

- Slides of the lectures on the e-learning platform

Periodo di erogazione dell'insegnamento

I Semestre II anno

Modalità di verifica del profitto e valutazione


Gli studenti devono dimostrare in un colloquio di sapere come i principi fondamentali della fisica dei semiconduttori possono essere utilizzati

nella progettazione e sviluppo di dispositivi elettronici con funzioni specifiche, e come le funzioni del dispositivo possono essere simulate ed analizzate sperimentalmente in laboratorio con approcci adeguati.La prova orale, si compone di due, o tre domande, su parti diverse del corso, dove si richiede che l'illustrazione dell'argomento sia accompagnata da schizzi, equazioni e dati numerici. Lo studente sceglie il primo argomento e deve consegnare almeno 5 giorno prima dell'esame la relazione sulle attività di laboratorio.

Orario di ricevimento

Su appuntamento.

Sustainable Development Goals

SALUTE E BENESSERE | ACQUA PULITA E SERVIZI IGIENICO-SANITARI | ENERGIA PULITA E ACCESSIBILE | IMPRESE, INNOVAZIONE E INFRASTRUTTURE | CITTÀ E COMUNITÀ SOSTENIBILI
Export

Aims

The course is devoted to provide the student with the fundamentals of the physics and technology of modern semiconductors devices (diodes and transitors) as well emerging and innovative devices for classical (conventional and unconventional) and quantum information processing, as well as for neuroelectronics applications . In addition to lectures the course offers two laboratory activities dedicated to state of the art electrical characterization and simulation (based on Sentaurus) of the devices.

Contents

Physics of conventional electronic devices (junctions, transistors), of ultrascaled nanoelectronic devices (single electron and single atom transistors), and of emerging and novel nanoelectronic and spintronic devices for logic and memory applications, and for quantum information processing. Nanoelectronic devices (EOS, EOSFETs, Memristors) for neuroelectronic applications will be also discussed.

Detailed program

LECTURES

1. p-n junction: unpolarized and polarized junction. Current-Voltage characteristic in ideal and real junctions. The junction capacitance. Breakdown. Models. Solar cells. PiN diodes. (PTED1-PTED9)

2. Bipolar Transistors (BJT): Currents. Active mode. Gain. (PTED10-PTED13)

3. Metal-Semiconductor Contact: Ohmic and Schottky contacts. Schottky diode. Characteristic I-V. Interface states. (PTED14)

4. Metal Oxide Semiconductor: band structures. MOS capacitor. Accumulation, depletion and inversion. Capacitance. Effect of interface states. The MOSFET. Evolution of the MOSFET: SOI MOSFET, high mobility substrates, high-k, quantum effects in the inversion channel, the leakage currents. (PTED15-PTED22)

5. Non-volatile memory devices: FLASH memories, nanocrystals, PCM, ReRAM. (PTED23)

6. Electronic devices based on heterojunction: HBT, HEMT. (PTED24)

7. Electronic devices based on quantum effects: tunnel diodes, Tunneling-FET, low-dimensional devices, Fin-FET, single-electron transistor (SET), Coulomb blockade, spin blockade. (PTED25)

8. Emerging spintronic devices: transistors based on the transport of spin, magnetic tunnel junctions. (PTED26)

9. Solid state devices for quantum computing: introduction to quantum computing, qubit, spin in semiconductors (manipulation, entanglement, detection). (PTED27)

10. Neuroelectronic: devices for stimulation / sense neuronal activity, devices for emulating the synaptic and neuronal activity in neuromorphic circuits. (PTED28)

LABORATORY

1. Introduction to the experimental techniques and set-ups (LPTEDE1)

2. Semiconductor-metal contacts: ohmic and Schottky contacts. Zener diode. (LPTEDE2)

3. BJT: I-V (LPTEDE3)

4. MOS: C-V (doping profile, defects, high-k -EOT) (LPTEDE4)

5. MOSFET: I-V, C-V (LPTEDE5)

6. Introduction to TCAD (LPTEDS1)

7. Surviving to Linux (LPTEDS2)

8. Building up the device: SSE (LPTEDS3)

9. Practice: Zener diode / MOSFET / Bipolar (LPTEDS4)

10. Hints on discretization (LPTEDS5)

11. Meshing the device: SSE/SNMESH (LPTEDS6)

12. Practice: Zener diode / MOSFET / Bipolar (LPTEDS7)

13. Solving the device: SDevice 3h (LPTEDS8)

14. Visualizing results: SVisual 1h (LPTEDS9)

15. Practice: simulated device characterization (LPTEDS10)

Prerequisites

Solid State Physics and Physics and Semiconductors.

Teaching form

The course comprises lectures in the classroom and a laboratory part dedicated to electrical characterization and simulation.

Textbook and teaching resource

- R.F. Pierret, Semiconductor Device Fundamentals, Addison Wesley

- M.S. Sze, Semiconductor devices, Physics and Technology, J. Wiley

- C. Papadopoulos, Solid State Electronic Devices: An Introduction, Springer .

- Notes from the teachers

- Slides of the lectures on the e-learning platform

Semester

1ˢᵗ Semester II year

Assessment method

Students must demonstrate in an interview to know how the main principles of the physics of semiconductors can be used in the design and development of electronic devices with specific functions, and how the device functions can be modelled and analysed in the laboratory with suitable approaches. The oral examination, consists of two, or three questions on different parts of the course, where the illustration of the topic is requested to be accompanied by sketches, equations and numerical data. The student should choose the first question (topic). At least 5 days before the exam the student must submit the report on the laboratory activity.

Office hours

By appointment.

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING | CLEAN WATER AND SANITATION | AFFORDABLE AND CLEAN ENERGY | INDUSTRY, INNOVATION AND INFRASTRUCTURE | SUSTAINABLE CITIES AND COMMUNITIES
Enter

Key information

Field of research
FIS/03
ECTS
6
Term
First semester
Activity type
Mandatory to be chosen
Course Length (Hours)
58
Degree Course Type
2-year Master Degreee
Language
English

Staff

    Teacher

  • Marco Fanciulli
    Marco Fanciulli
  • LZ
    Lucia Zullino

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Self enrolment (Student)
Manual enrolments

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING - Ensure healthy lives and promote well-being for all at all ages
GOOD HEALTH AND WELL-BEING
CLEAN WATER AND SANITATION - Ensure availability and sustainable management of water and sanitation for all
CLEAN WATER AND SANITATION
AFFORDABLE AND CLEAN ENERGY - Ensure access to affordable, reliable, sustainable and modern energy for all
AFFORDABLE AND CLEAN ENERGY
INDUSTRY, INNOVATION AND INFRASTRUCTURE - Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation
INDUSTRY, INNOVATION AND INFRASTRUCTURE
SUSTAINABLE CITIES AND COMMUNITIES - Make cities and human settlements inclusive, safe, resilient and sustainable
SUSTAINABLE CITIES AND COMMUNITIES

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics