- Economics
- Master Degree
- International Economics - Economia Internazionale [F5602M]
- Courses
- A.A. 2022-2023
- 1st year
- Quantitative Methods
- Summary
Course Syllabus
Obiettivi formativi
Lo studente acquisirà le conoscenze necessarie a condurre in modo autonomo ricerche empiriche in ambito microeconomico e macroeconomico. Ulteriori specifiche sono fornite nelle sezioni di ciascun modulo.
Contenuti sintetici
Il corso fornisce le conoscenze di base di inferenza statistica e econometria per lo sviluppo e la stima di modelli per l’analisi dei fenomeni economici complessi. Ulteriori specifiche sono fornite nelle sezioni di ciascun modulo.
Programma esteso
Si vedano le sezioni di ciascun modulo.
Prerequisiti
Statistica di base. Statistica descrittiva. Calcolo delle probabilità. Distribuzioni di probabilità.
Metodi didattici
Lezioni frontali. Sessioni applicate in laboratorio.
Durante l'emergenza Covid-19 le lezioni saranno online.
Modalità di verifica dell'apprendimento
Lo studente può sostenere prove parziali scritte durante il corso o una prova finale orale per ciascun modulo. Il voto finale viene ottenuto come media pesata delle prove parziali, in base ai CFU di ciascun modulo.
Testi di riferimento
Si vedano le sezioni di ciascun modulo.
Periodo di erogazione dell'insegnamento
Primo e secondo semestre.
Lingua di insegnamento
Inglese.
Sustainable Development Goals
Learning objectives
Students will obtain the ability to carry out empirical research in microeconomics and macroeconomics. Further details are provided in the dedicated sections of each module.
Contents
The course provides the basic elements of inferential statistics and econometrics for the development and the estimation of models to analyze complex phenomena in economics. Further details are provided in the dedicated sections of each module.
Detailed program
INFERENTIAL STATISTICS
Samples and sampling distributions. Convergences of sequences of random variables. Law of large numbers. Central limit theorem and its applications. Monte Carlo approximations. Sampling from the Normal distribution. Statistical models. Bernoulli model, location Normal model, location-scale Normal model. Likelihood function. Sufficient statistics. Maximum likelihood estimates. Mean squared error. Bias, standard error, consistency. Confidence intervals. Confidence intervals in the Bernoulli model, the location Normal model, the location-scale Normal model. Testing hypotheses. P-values, statistical significance, practical significance, critical values. One-sided and two-sided tests. Hypothesis assessment via confidence intervals. Testing hypotheses in the Bernoulli model, the location Normal model, the location-scale Normal model. Sample size determination. Inference on a variance. Distribution-free (non parametric) methods. Method of moments. Bootstrap method. Inference about quantiles. Least squares method. Ordinary least squares estimates in the simple linear regression model. ANOVA decomposition in the simple linear regression model. Hypotheses testing about the parameters of the simple linear model.
ECONOMETRICS
The simple regression model. Multiple regression analysis: estimation. Multiple regression analysis: inference. Multiple regression analysis: OLS asymptotics. Multiple regression analysis: further issues. Multiple regression analysis with qualitative information. Heteroskedasticity. More on specification and data problems. Basic regression analysis with time series data. Panel data. Instrumental variables estimation. Simultaneous equations models. Limited dependent variable models. Advanced time series topics.
Prerequisites
Basic statistics. Descriptive statistics. Probability. Probability distributions.
Teaching methods
Frontal lessons. Tutorials in the lab.
During the Covid-19 emergency, lectures will be online.
Assessment methods
Students can undertake written midterms or a final oral test for each module. The final mark is obtained as a weighted average of the two modules, according to the credits (CFU) of each module.
Textbooks and Reading Materials
INFERENTIAL STATISTICS
Evans, M.J., Probability and Statistics: The Science of Uncertainty (2nd edition), Freeman, 2010.
ECONOMETRICS
"Introductory econometrics: a modern approach", by J.M. Wooldridge, Thompson South Western, Belmond, 2015 (5ᵗʰ edition).
Semester
First and second semester.
Teaching language
English.