Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • Calendar
  • My Media
  • More
Listen to this page using ReadSpeaker
You are currently using guest access
 Log in
e-Learning - UNIMIB
Home Calendar My Media
Percorso della pagina
  1. Economics
  2. Master Degree
  3. International Economics - Economia Internazionale [F5603M - F5602M]
  4. Courses
  5. A.A. 2022-2023
  6. 1st year
  1. Quantitative Methods
  2. Summary
Insegnamento con unità didattiche Course full name
Quantitative Methods
Course ID number
2223-1-F5602M002
Course summary SYLLABUS

Blocks

Skip Teaching units

Teaching units

Course full name Inferential Stastics Course ID number 2223-1-F5602M002-F5602M003M
Course summary SYLLABUS
Course full name Econometrics Course ID number 2223-1-F5602M002-F5602M004M
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi formativi

Lo studente acquisirà le conoscenze necessarie a condurre in modo autonomo ricerche empiriche in ambito microeconomico e macroeconomico. Ulteriori specifiche sono fornite nelle sezioni di ciascun modulo.

Contenuti sintetici

Il corso fornisce le conoscenze di base di inferenza statistica e econometria per lo sviluppo e la stima di modelli per l’analisi dei fenomeni economici complessi. Ulteriori specifiche sono fornite nelle sezioni di ciascun modulo.

Programma esteso

Si vedano le sezioni di ciascun modulo.

Prerequisiti

Statistica di base. Statistica descrittiva. Calcolo delle probabilità. Distribuzioni di probabilità.

Metodi didattici

Lezioni frontali. Sessioni applicate in laboratorio.

Durante l'emergenza Covid-19 le lezioni saranno online.

Modalità di verifica dell'apprendimento

Lo studente può sostenere prove parziali scritte durante il corso o una prova finale orale per ciascun modulo. Il voto finale viene ottenuto come media pesata delle prove parziali, in base ai CFU di ciascun modulo.

Testi di riferimento

Si vedano le sezioni di ciascun modulo.

Periodo di erogazione dell'insegnamento

Primo e secondo semestre.

Lingua di insegnamento

Inglese.

Sustainable Development Goals

SCONFIGGERE LA POVERTÀ | PARITÁ DI GENERE
Export

Learning objectives

Students will obtain the ability to carry out empirical research in microeconomics and macroeconomics. Further details are provided in the dedicated sections of each module.

Contents

The course provides the basic elements of inferential statistics and econometrics for the development and the estimation of models to analyze complex phenomena in economics. Further details are provided in the dedicated sections of each module.

Detailed program

INFERENTIAL STATISTICS

Samples and sampling distributions. Convergences of sequences of random variables. Law of large numbers. Central limit theorem and its applications. Monte Carlo approximations. Sampling from the Normal distribution. Statistical models. Bernoulli model, location Normal model, location-scale Normal model. Likelihood function. Sufficient statistics. Maximum likelihood estimates. Mean squared error. Bias, standard error, consistency. Confidence intervals. Confidence intervals in the Bernoulli model, the location Normal model, the location-scale Normal model. Testing hypotheses. P-values, statistical significance, practical significance, critical values. One-sided and two-sided tests. Hypothesis assessment via confidence intervals. Testing hypotheses in the Bernoulli model, the location Normal model, the location-scale Normal model. Sample size determination. Inference on a variance. Distribution-free (non parametric) methods. Method of moments. Bootstrap method. Inference about quantiles. Least squares method. Ordinary least squares estimates in the simple linear regression model. ANOVA decomposition in the simple linear regression model. Hypotheses testing about the parameters of the simple linear model.

ECONOMETRICS

The simple regression model. Multiple regression analysis: estimation. Multiple regression analysis: inference. Multiple regression analysis: OLS asymptotics. Multiple regression analysis: further issues. Multiple regression analysis with qualitative information. Heteroskedasticity. More on specification and data problems. Basic regression analysis with time series data. Panel data. Instrumental variables estimation. Simultaneous equations models. Limited dependent variable models. Advanced time series topics.

Prerequisites

Basic statistics. Descriptive statistics. Probability. Probability distributions.

Teaching methods

Frontal lessons. Tutorials in the lab.

During the Covid-19 emergency, lectures will be online.

Assessment methods

Students can undertake written midterms or a final oral test for each module. The final mark is obtained as a weighted average of the two modules, according to the credits (CFU) of each module.

Textbooks and Reading Materials

INFERENTIAL STATISTICS

Evans, M.J., Probability and Statistics: The Science of Uncertainty (2nd edition), Freeman, 2010.

ECONOMETRICS

"Introductory econometrics: a modern approach", by J.M. Wooldridge, Thompson South Western, Belmond, 2015 (5ᵗʰ edition).

Semester

First and second semester.

Teaching language

English.

Sustainable Development Goals

NO POVERTY | GENDER EQUALITY
Enter

Key information

ECTS
13
Term
Annual
Activity type
Mandatory
Course Length (Hours)
91
Degree Course Type
2-year Master Degreee
Language
English

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Guest access

Sustainable Development Goals

NO POVERTY - End poverty in all its forms everywhere
NO POVERTY
GENDER EQUALITY - Achieve gender equality and empower all women and girls
GENDER EQUALITY

You are currently using guest access (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics