Course Syllabus
Obiettivi
Il continuo e rapido sviluppo di dispositivi sensoristici sofisticati e di metodi avanzati di AI rende possibile la realizzazione di ambienti intelligenti che supportano in modo non intrusivo le persone nella loro vita quotidiana. Questi sistemi possono operare sia in ambienti indoor (es.: smart homes, smart buildings) che in ambienti outdoor (es.: smart cities). L'obiettivo di questo corso è di fornire fondamenti per la progettazione e l'implementazione di sistemi intelligenti negli scenari di Ambient Intelligence, considerando aspetti sia tecnologici che metodologici.
Contenuti sintetici
Il corso introdurrà la "context-awareness" come concetto fondamentale per i sistemi di Ambient Intelligence. Il programma include una presentazione delle tecnologie rilevanti (es.: dispositivi, reti, architetture, data integration, piattaforme di storage) ma anche metodi di AI applicati ad Ambient Intelligence (es.: il riconoscimento di attività umane).
Programma esteso
- Introduzione a Context-awareness e Ambient Intelligence
- Introduzione a Smart-Homes e Domotica (Dispositivi, reti, e architetture; Data integration e piattaforme di storage)
- Modellazione e rappresentazione del contesto
- Sensing in mobile/wearable computing
- Gestione dei dati di sensori
- Micro-localizzazione in ambienti smart indoor
- Smart Energy Management in Smart Homes
- Metodi di AI per il riconoscimento di attività umane
- Riconoscimento di attività umane in Smart-Homes in setting single- e multi-inhabitant
- Riconoscimento di anomalie comportamentali in Smart-Homes
- Aspetti di personalizzazione in Ambient Intelligence
- Il problema della "data scarcity"
- Metodi ibridi knowledge-based e data-driven
- Metodi di AI avanzati per Ambient Intelligence (es.:, federated learning, continual learning)
- Explainable AI per Ambient Intelligence
- Aspetti di Data Privacy per Ambient Intelligence
Le lezioni di laboratorio verteranno su esercitazioni pratiche volte a implementare metodi di AI per Ambient Intelligence.
Prerequisiti
Programmazione Python, Sistemi distribuiti, Fondamenti di supervised e unsupervised deep learning.
Modalità didattica
Lezioni teoriche frontali (32 hours) e esercitazioni in laboratorio (24 hours).
La frequenza a tutte le lezioni è altamente raccomandata. Le lezioni si terranno in presenza, a meno di ulteriori restrizioni relative a COVID-19.
Materiale didattico
Le principali risorse saranno le slides e materiale online.
Verranno forniti articoli scientifici rilevanti per ogni argomento.
Alcune survey rilevanti:
- Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and mobile computing, 6(2), 161-180.
- De Silva, L. C., Morikawa, C., & Petra, I. M. (2012). State of the art of smart homes. Engineering Applications of Artificial Intelligence, 25(7), 1313-1321.
- Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2021). Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM Computing Surveys (CSUR), 54(4), 1-40.
Libri di testo consigliati:
- “Ubiquitous Computing: Smart Devices, Environments and Interactions” (S. Poslad, Wiley, 2009)
- “Human Activity Recognition and Behaviour Analysis: For Cyber-physical Systems in Smart Environments” (L. Chen and C. Nugent, Springer, 2020)
Periodo di erogazione dell'insegnamento
Secondo semestre
Modalità di verifica del profitto e valutazione
Esame scritto e progetto individuale. L'esame scritto sarà una combinazione di domande a risposta multipla e domande aperte sulla parte teorica del corso.
Il progetto individuale sarà scelto dallo studente in accordo con i docenti, e includerà l'implementazione di metodi di AI per Ambient Intelligence e la loro valutazione su un dataset pubblico.
Orario di ricevimento
Su appuntamento. Contattare i docenti via email.
Sustainable Development Goals
Aims
The continuous and rapid development of sophisticated sensing devices and advanced AI methods makes it possible to realize intelligent environments that unobtrusively support people in their daily life. Such systems may operate indoors (e.g., smart homes, smart buildings) as well as outdoors (e.g., smart cities). The aim of this course is to teach how to design and implement intelligent systems in such Ambient Intelligence scenarios, considering both technological and methodological aspects.
Contents
The course will introduce context-awareness as a fundamental concept for Ambient Intelligence systems. The program includes a presentation of relevant technologies (e.g., devices, networks, architectures, data integration, and storage platforms) as well as AI methods and applications for Ambient Intelligence (e.g., human activity recognition).
Detailed program
- Introduction to context-awareness and ambient intelligence
- Introduction to Smart-Homes and Domotics (Devices, networks, and architectures; Data integration and storage platforms)
- Context Modeling and Representation
- Sensing in mobile and wearable computing
- Sensor data management
- Micro-localization in Indoor Smart Environments
- Smart Energy Management in Smart Homes
- AI methods for Human Activity Recognition
- Single and Multi-inhabitant Activity Recognition in Smart-Homes
- Abnormal behaviors detection in Smart-Homes
- Personalized Ambient Intelligence methods
- The data scarcity problem
- Hybrid knowledge-based and data-driven approaches
- Advanced AI methods for Ambient Intelligence (e.g., federated learning, continual learning)
- Explainable AI for Ambient Intelligence
- Data Privacy aspects of Ambient Intelligence
The lab lessons will propose practical hands-on on AI methods for Ambient Intelligence
Prerequisites
Python programming, distributed systems, basics of supervised and unsupervised deep learning.
Teaching form
Frontal theory lessons (32 hours) and lab lessons (24 hours).
Attendance to all classes is highly recommended. Lectures will be held in presence, unless further COVID-19 related restrictions are imposed.
Textbook and teaching resource
The main teaching resources are the slides and online material.
We will also provide relevant scientific papers for each covered topic.
Some relevant surveys:
- Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and mobile computing, 6(2), 161-180.
- De Silva, L. C., Morikawa, C., & Petra, I. M. (2012). State of the art of smart homes. Engineering Applications of Artificial Intelligence, 25(7), 1313-1321.
- Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2021). Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM Computing Surveys (CSUR), 54(4), 1-40.
Recommended textbooks:
- “Ubiquitous Computing: Smart Devices, Environments and Interactions” (S. Poslad, Wiley, 2009)
- “Human Activity Recognition and Behaviour Analysis: For Cyber-physical Systems in Smart Environments” (L. Chen and C. Nugent, Springer, 2020)
Semester
Second semester
Assessment method
Written exam and individual project.
The written exam will be a combination of multiple choices and open questions on the theory part.
The individual project will be chosen by the student in agreement with the teachers, and it will include the implementation of AI methods for Ambient Intelligence and their evaluation on a public dataset.
Office hours
On appointment. Contact the teachers via email.
Sustainable Development Goals
Key information
Staff
-
Claudio Bettini
-
Gabriele Civitarese