Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Postgraduate
  2. PhD School
  3. Doctoral programs' teaching activities
  4. Chemical, Geological and Environmental Sciences / Scienze Chimiche, Geologiche e Ambientali
  5. 2023-2024
  6. Intercurricular
  1. Time Series Analysis of Environmental Data
  2. Summary
Course full name
Time Series Analysis of Environmental Data
Course ID number
2324-1-124R016
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Titolo

Time Series Analysis of Environmental Data

Docente(i)

Tullia Bonomi and Chiara Zanotti

Lingua

Italiano/Inglese

Breve descrizione

L'obiettivo del corso è quello di apprendere i fondamenti dell'analisi delle serie temporali utili per le applicazioni a dati ambientali, con particolare attenzione alla qualità e disponibilità delle risorse idriche.
Verranno svolte esercitazioni pratiche in ambiente R su dati di acque sotterranee, superficiali e dati meteorologici.

Le lezioni frontali e la formazione copriranno i principali aspetti della gestione, acquisizione, visualizzazione, analisi e modellazione di dati di serie temporali ambientali:

  • Tipologie di dati ambientali
  • Basi di R
  • Esplorazione e visualizzazione di serie temporali, statistiche descrittive
  • Analisi dei trend
  • Auto e cross-correlazione
  • Decomposizione di serie storiche
  • Time series cluster analysis

Valutazione: Si - presentazione orale finale

CFU / Ore

2 CFU - 20 Ore
Chiara Zanotti 16 ore lezione
Tullia Bonomi 4 ore esercitazione

Periodo di erogazione

II semestre: June 2024

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ | ACQUA PULITA E SERVIZI IGIENICO-SANITARI | IMPRESE, INNOVAZIONE E INFRASTRUTTURE
Export

Title

Time Series Analysis of Environmental Data

Teacher(s)

Tullia Bonomi and Chiara Zanotti

Language

Italian/English

Short description

The aim of the course is to learn the fundamentals of time series analysis for environmental data applications, with a specific focus on water resources quality and availability.
Practical exercises will be carried out in the R environment on groundwater, surface water, and meteorological data.

Lectures and training will cover the main aspects of environmental time series data management, acquisition, visualization, analysis, and modeling:

  • Types of environmental data
  • R basics
  • Explore and visualize time series data, descriptive statistics
  • Trend analysis
  • Auto and cross-correlation
  • Time series decomposition
  • Time series cluster analysis

Evaluation: YES - with a final oral presentation

CFU / Hours

2 CFU - 20 Hours
Chiara Zanotti 16 hours lectures
Tullia Bonomi 4 hours training

Teaching period

II semester: June 2024

Sustainable Development Goals

QUALITY EDUCATION | CLEAN WATER AND SANITATION | INDUSTRY, INNOVATION AND INFRASTRUCTURE
Enter

Key information

Field of research
GEO/05
ECTS
2
Course Length (Hours)
20

Staff

    Teacher

  • TB
    Tullia Bonomi
  • CZ
    Chiara Zanotti

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Self enrolment (Student)

Sustainable Development Goals

QUALITY EDUCATION - Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
QUALITY EDUCATION
CLEAN WATER AND SANITATION - Ensure availability and sustainable management of water and sanitation for all
CLEAN WATER AND SANITATION
INDUSTRY, INNOVATION AND INFRASTRUCTURE - Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation
INDUSTRY, INNOVATION AND INFRASTRUCTURE

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics