Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Medicine and Surgery
  2. Bachelor Degree
  3. Fisioterapia [I0201D]
  4. Courses
  5. A.A. 2023-2024
  6. 1st year
  1. Motor Control
  2. Summary
Unità didattica Course full name
Motor Control
Course ID number
2324-1-I0201D131-I0201D196M
Course summary SYLLABUS

Blocks

Back to Neuroanatomy and Neurophysiology

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

Studio dei principi che governano il controllo sensorimotorio e delle aree neurali coinvolte

Contenuti sintetici

Principi computazionali del controllo sensorimtorio
Apprendimento sensorimotorio
Aree neurali coinvolte

Programma esteso

Introduzione al controllo motorio
Livelli di analisi di Marr
Pianificazione e controllo
Cinematica diretta e inversa
Dinamica diretta e inversa

Schemi di controllo e predizione dello stato
feedforward e feedback
Internal model (inverse e forward)
Stima dello stato
Inferenza Bayesiana

Ottimalità
Pianificazione della traiettoria
Funzioni di costo: minimum jerk, minimum torque, minimum variance
Optimal feedback control
Minimum intervention principle

Apprendimento sensorimotorio
Adattamento
Task e prediction error

Cervelletto
Funzioni
Microcircuito cerebellare
Apprendimento cerebellare

Aree motorie corticali
Corteccia motoria primaria
Corteccia premotoria
Tratti discendenti

Circuiti spinali
Midollo spinale
Recettori propriocettivi muscolari
Archi riflessi e loro modulazione

Controllo della locomozione
Central Pattern Generator (CPG)
Modulazione CPG da parte di afferenze sensoriali e aree sovraspinali

Prerequisiti

Modalità didattica

lezioni frontali

Materiale didattico

Le lezioni di questo modulo sono sviluppate sulla base di due libri di riferimento e soprattutto articoli scientifici. Per ciascuna lezione verrà comunicato il relativo materiale didattico.

Libri di riferimento:
Kandel E., et al. (2021). Principles of Neural Science. (6th ed). McGraw Hill. Capitoli 30-36.
Purves D., et al. (2021). Neuroscienze. (5th ed. italiana; 6th ed. americana). Zanichelli. Capitoli 16-19.

Articoli scientifici (necessari):
Marr D. (2010) Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information. The MIT Press. Capitolo 1.
Wolpert D, Ghahramani Z. (2000). Computational principles of movement neuroscience. Nat Neurosci. Nat Neurosci 3 (Suppl 11), 1212–1217.
Kawato M. (1999). Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 9(6):718-27.
Todorov E. (2004). Optimality principles in senosrimotor control. Nat Neurosci. 7(9):907-915.

Articoli scientifici (approfondimenti):
Körding KP, Wolpert DM. (2004). Bayesian integration in sensorimotor learning. Nature. 427(6971):244-7
Shadmehr R, Mussa-Ivaldi F. (1994) Adaptive representation of dynamics during learning of a motor task. JNeurosci. 14(4):3208:24
Morasso, P. (1981) Spatial control of arm movements. Exp Brain Res 42, 223–227.
Todorov E, Jordan MI. (2002). Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11):1226-1235.
Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008 Mar;185(3):359-81

Periodo di erogazione dell'insegnamento

Annuale

Modalità di verifica del profitto e valutazione

come da syllabus dell'insegnamento

Orario di ricevimento

Su appuntamento

Sustainable Development Goals

SALUTE E BENESSERE
Export

Aims

Study of the principles of sensorimotor control and of the involved neural structures

Contents

Computational principles of sensorimotor control
Sensorimotor learning
Involved neural structures

Detailed program

Introduction to sensorimotor control
Marr Marr's levels of analysis
Planning and control
Direct and inverse kinematics
Direct and inverse dynamics

Control schema and prediction
Feedforward e feedback control
Internal models (inverse e forward)
State estimation
Bayesian inference

Optimality
Trajectory planning
Cost functions: minimum jerk, minimum torque, minimum variance
Optimal feedback control
Minimum intervention principle

Sensorimotor learning
Adaptation
Task e prediction error

Cerebellum
Functions
Cerebellar microcircuit
Cerebellar learning

Motor cortical regions
Primary motor cortex
Premotor cortex
Descedent pathways

Spinal circuity
Spinal cord
Muscle proprioceptors
Spinal reflees and their modulation

Control of locomotion
Central Pattern Generator (CPG)
CPG modulation by sensory afferents and sovraspinal regions

Prerequisites

Teaching form

in presence

Textbook and teaching resource

This course has been developed based on two books and several scientific articles. The teaching resources specific for each topic will be communicated during the classes.

Textbooks:
Kandel E., et al. (2021). Principles of Neural Science. (6th ed). McGraw Hill. Capitoli 30-36.
Purves D., et al. (2021). Neuroscienze. (5th ed. italiana; 6th ed. americana). Zanichelli. Capitoli 16-19.

Scientific papers (required):
Marr D. (2010) Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information. The MIT Press. Capitolo 1.
Wolpert D, Ghahramani Z. (2000). Computational principles of movement neuroscience. Nat Neurosci. Nat Neurosci 3 (Suppl 11), 1212–1217.
Kawato M. (1999). Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 9(6):718-27.
Todorov E. (2004). Optimality principles in senosrimotor control. Nat Neurosci. 7(9):907-915.

Scientific papers (suggested):
Körding KP, Wolpert DM. (2004). Bayesian integration in sensorimotor learning. Nature. 427(6971):244-7
Shadmehr R, Mussa-Ivaldi F. (1994) Adaptive representation of dynamics during learning of a motor task. JNeurosci. 14(4):3208:24
Morasso, P. (1981) Spatial control of arm movements. Exp Brain Res 42, 223–227.
Todorov E, Jordan MI. (2002). Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11):1226-1235.
Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008 Mar;185(3):359-81

Semester

Annual

Assessment method

Described in the subject's syllabus

Office hours

By appointment

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING
Enter

Key information

Field of research
MED/48
ECTS
2
Term
Annual
Activity type
Mandatory
Course Length (Hours)
16
Degree Course Type
Degree Course
Language
Italian

Staff

    Teacher

  • Cristiano Alessandro
    Cristiano Alessandro

Enrolment methods

Manual enrolments
Self enrolment (Student)

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING - Ensure healthy lives and promote well-being for all at all ages
GOOD HEALTH AND WELL-BEING

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics