Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Science
  2. Master Degree
  3. Informatica [F1802Q - F1801Q]
  4. Courses
  5. A.A. 2023-2024
  6. 1st year
  1. Probabilistic Models for Decision Making
  2. Summary
Insegnamento Course full name
Probabilistic Models for Decision Making
Course ID number
2324-1-F1801Q127
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

Il corso fornirà i principali concetti e strumenti operativi, basati su metodi computazionali, per rappresentare il processo di apprendimento e le tecniche di ragionamento in condizioni di incertezza. Gli studenti acquisiranno abilità nell'utilizzare i concetti e i metodi appresi per risolvere problemi decisionali. In particolare gli studenti acquisiranno le seguenti competenze: identificazione delle relazioni tra parametri usando modelli probabilistici, costruzione di modelli decisionali, identificazione e valutazione del modello decisionale.

Contenuti sintetici

Rappresentazione dell’incertezza nei problemi di decisione

Rappresentazione della conoscenza in ambienti incerti

Reti Bayesiane Incertezza e scelte razionali

Il ragionamento probabilistico nel tempo

Inferenza nei modelli dinamici

Programma esteso

  1. "Representing uncertainty in decision problems Basic notions of probability theory Bayes rule and its application". Chapter 13.

2.1 "Knowledge representation in an uncertain domain Bayesian network semantics; Efficient representation of conditional probabilities". Chapter 14 (14.1, 14.2, 14.3).

2.2 D-separation (materiale fornito dal docente)

2.3 Generazione numeri psudo-casuali per campionamento (materiale fornito dal docente)

  1. "Exact and approximate inference in Bayesian Networks". Chapter 14 (14.4, 14.5)

  2. "Markov Chains" (materiale fornito dal docente)

  3. Hidden Markov Models; Forecasting, Filtering and Smoothing ". Chapter 15 (15.1, 15.2 15.3).

Prerequisiti

Nozioni di base di: probabilità, statistica, algebra lineare

Modalità didattica

Lezioni, esercitazioni in aula, laboratorio

Il corso è erogato in lingua italiana.

Materiale didattico

S. Russel, P. Norvig. “Intelligenza Artificiale: Un Approccio Moderno”, Prentice Hall, III Edizione

papers & slides

Periodo di erogazione dell'insegnamento

Secondo Semestre

Modalità di verifica del profitto e valutazione

Esame Scritto + orale facoltativo

Orario di ricevimento

Su appuntamento

Export

Aims

The course will provide the main concepts and operative tools, based on computational methods, for representing the learning process and the reasoning techniques in uncertain domains. Students will gain the ability of using the concepts and methods learned for solving practical operational decision problems. In particular, they will acquire the following abilities: to identify relations between parameters by using probabilistic models, to build models for decision making, to evaluate and find the problem solutions.

Contents

Representing uncertainty in decision problems

Knowledge representation in uncertain domains

Bayesian Networks

Pseudo-number generation for sampling

Inference on BN

Probabilistic Reasoning over time

Markov Chains

Hidden Markov Models

Inference in dynamic models

Detailed program

  1. "Representing uncertainty in decision problems Basic notions of probability theory Bayes rule and its application". Chapter 13.

    2.1 "Knowledge representation in an uncertain domain Bayesian network semantics; Efficient representation of conditional probabilities". Chapter 14 (14.1, 14.2, 14.3).

    2.2 D-separation (papers & slides)

    2.3 Pseudo-number generation for sampling (papers & slides)

    1. "Exact and approximate inference in Bayesian Networks". Chapter 14 (14.4, 14.5)

    2. "Markov Chains" (papers & slides)

    3. Hidden Markov Models; Forecasting, Filtering and Smoothing ". Chapter 15 (15.1, 15.2 15.3).

Prerequisites

Basic notions of: probability, statistics, linear algebra

The course is in Italian.

Teaching form

Lectures, classroom exercises, lab exercises

Textbook and teaching resource

S. Russel, P. Norvig. “Artificial Intelligence: A Modern Approach", Prentice Hall, III Edizione

papers & slides

Semester

Second Semester

Assessment method

Written Exam + oral (optional)

Office hours

By appointment

Enter

Key information

Field of research
MAT/09
ECTS
6
Term
Second semester
Activity type
Mandatory to be chosen
Course Length (Hours)
52
Degree Course Type
2-year Master Degreee
Language
Italian

Staff

    Teacher

  • EF
    Elisabetta Fersini
  • GR
    Giulia Rizzi

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Self enrolment (Student)

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics