- Quantum Field Theory II
- Summary
Course Syllabus
Obiettivi
Completare lo studio delle teorie di campo quantistiche (QFT), sviluppando l’approccio funzionale alle teorie di gauge descriventi le interazioni fondamentali. Approfondire la conoscenza delle principali proprietà della QED e della QCD. Acquisire familiarità con argomenti avanzati di QFT.
Contenuti sintetici
Approccio funzionale alle teorie di gauge. Rinormalizzazione perturbativa di QED e QCD. Gruppo di rinormalizzazione per teorie di gauge. Anomalie.
Programma esteso
Azione effettiva a la Wilson. Classificazione degli operatori composti.
Introduzione alle teorie conformi. Gruppo conforme in d>2, rappresentazioni del gruppo conforme. Quantizzazione radiale, corrispondenza stato-operatore. Conseguenze dell'invarianza conforme sulal struttura dei correlatori. Bootstrap conforme. Gruppo conforme in d=2 e algebra di Virasoro.
Metodi funzionali per fermioni. Integrazione su variabili di Grassmann. Teoria di Yukawa: rinormalizzazione a un loop.
Simmetrie discrete: parità, time-reversal, coniugazione di carica. Teorema PCT.
Teorie di gauge. Teorie di Yang-Mills. Formulazione col path integral. Caso abeliano e caso non abeliano.
Propagatore dei campi di gauge. Gauge fixing, determinante di Faddeev-Popov e relativi ghosts. Quantizzazione BRST.
Approccio perturbativo al path integral per teorie di gauge con materia scalare e fermionica. QED: Rinormalizzazione e funzioni beta per QED e QCD. Libertà asintotica. Punto fisso di Banks-Zaks.
Rinormalizzabilità di teorie di gauge con rottura spontanea di simmetria. Gauge rinormalizzabili vs gauge unitario.
Simmetrie, identità di Ward-Takahashi e identità di Slavnov-Taylor. Casi particolari: QED e QCD.
Anomalie in QFT. Anomalie assiali e chirali. Il caso dell’anomalia del triangolo. Metodo di Fujikawa.
Prerequisiti
Corsi di Relatività Generale, Fisica Teorica I e II, Teoria dei Campi I
Modalità didattica
Lezioni frontali
Materiale didattico
M.E. Peskin, D.V. Schroeder, An introduction to Quantum Field Theory
P. Ramond, Field Theory : A Modern Primer, 2nd Edition
M. Srednicki, Quantum Field Theory
T-P. Cheng and L-F. Li, Gauge Theory of Elementary Particle Physics
D. Anselmi, Renormalizazion
S. Weinberg, The Quantum Theory of Fields I, II
H. Osborn, Lectures on Conformal Field Theories in more than two dimensions
D. Simmons-Duffin, TASI Lectures on the conformal bootstrap
L.F. Alday, Conformal Field Theory
Periodo di erogazione dell'insegnamento
Secondo semestre
Modalità di verifica del profitto e valutazione
Esame orale preceduto da un breve esercizio da svolgersi in presenza. L'esame orale vertera' sulla discussione dell'esercizio svolto e su domande aperte sugli argomenti svolti a lezione.
La valutazione finale terrà conto del livello di comprensione raggiunto di tutti gli argomenti introdotti a lezione, le capacità calcolative in QFT sviluppate, nonché della proprietà di linguaggio scientifico e della chiarezza espositiva nelle risposte.
Orario di ricevimento
Su appuntamento, scrivendo a silvia.penati@unimib.it
Sustainable Development Goals
Aims
Complete the study of QFTs by developing the functional approach to gauge theories, which describe fundamental interactions. Deepen the knowledge of the main properties of QED and QCD. Become familiar with advanced topics in QFT.
Contents
Functional approach to gauge theories. Perturbative renormalization of QED and QCD. Renormalization group for gauge theories. Anomalies.
Detailed program
Wilsonian effective action. Classification of composite operators.
Introduction to Conformal Field Theory. Conformal group in d>2, rapresentations of conformal group. Radial quantization, state-operator correspondence. Consequences of conformal invariance on the structure of the correlators. Conformal Bootstrap. Conformal group in d=2 and Virasoro algebra.
Functional methods for fermions. Integration on grassmannian variables. Yukawa theory: one-loop renormalization.
Discrete symmetries: parity, time-reversal, charge conjugation. PCT theorem.
Gauge theories. Yang-Mills theories. Path integral formulation. Abelian and non-abelian cases.
Propagator of the gauge fields. Gauge fixing, Faddeev-Popov determinant and corresponding ghosts. BRST quantization.
Perturbative approach to path integral for gauge theories with scalar and fermionic matter. QED: Renormalization and beta functions for QED and QCD. Asymptotic freedom. Banks-Zaks fixed point.
Renormalizability of gauge theories with spontaneous symmetry breaking. Renormalizable gauges vs unitary gauge.
Symmetries, Ward-Takahashi and Slavnov-Taylors identities. The case of QED and QCD.
Anomalies in QFT. Axial and chiral anomalies. Triangle anomaly. Fujikawa's method.
Prerequisites
General Relativity, Theoretical Physics I,II, Quantum Field Theory I
Teaching form
Frontal lectures
Textbook and teaching resource
M.E. Peskin, D.V. Schroeder, An introduction to Quantum Field Theory
P. Ramond, Field Theory : A Modern Primer, 2nd Edition
M. Srednicki, Quantum Field Theory
T-P. Cheng and L-F. Li, Gauge Theory of Elementary Particle Physics
D. Anselmi, Renormalizazion
S. Weinberg, The Quantum Theory of Fields I, II
H. Osborn, Lectures on Conformal Field Theories in more than two dimensions
D. Simmons-Duffin, TASI Lectures on the conformal bootstrap
L.F. Alday, Conformal Field Theory
Semester
Second semester
Assessment method
Oral exam preceded by a short exercise to be solved in presence. The oral exam will include a discussion of the exercise and open questions on topics presented in class.
The final evaluation will take into account the level of comprehension of all the topics introduced in the course, the level of computational skills in QFT acquired, as well as scientific language skills and clarity of the answers.
Office hours
By appointment, sending an e-mail to silvia.penati@unimib.it
Sustainable Development Goals
Key information
Staff
-
Silvia Penati