Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Postgraduate
  2. PhD School
  3. Doctoral programs' teaching activities
  4. Computer Science / Informatica
  5. 2023-2024
  1. Neural Symbolic Computation
  2. Summary
Course full name
Neural Symbolic Computation
Course ID number
2324-114R008
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Titolo

Neural Symbolic Computation

Docente(i)

Guido Fiorino
Rafael Peñaloza
Italo Zoppis

Lingua

Inglese

Breve descrizione

Il corso ha lo scopo di presentare il concetto di integrazione simbolica alle reti neurali (Neural-Symbolic Learning and Reasoning).
Per quanto possibile si cercherà di rendere il corso autocontenuto in particolare circa le nozioni di logica utili a comprendere l'approccio. Programma di massima:

  • Ragionamento non monotonico e ASP;
  • Fuzzy e Real Logics;
  • inserimento ed estrazione di conoscenza dal sistema CLIP;
  • Logic Tensor Networks e, se possibile, Logical Neural Networks;
  • Computational Graphs.

Riferimenti:
Un riferimento circa il mondo dell'approccio neuro-simbolico è il seguente:
Pascal Hitzler, Md Kamruzzaman Sarker (eds.), Neuro-Symbolic Artificial Intelligence - The State of the Art. Frontiers in Artificial Intelligence and Applications Vol 342, IOS Press, Amsterdam, 2022.

CFU / Ore

2 CFU/16 ore

Periodo di erogazione

Settembre 2024

Export

Title

Neural Symbolic Computation

Teacher(s)

Guido Fiorino
Rafael Peñaloza
Italo Zoppis

Language

English

Short description

The aim of the course is to present the field of neuro-symbolic integration, also known as
Neural-Symbolic Learning and Reasoning.

As far as possible we try to keep the couse self-contained, in particular for the logical notions necessary to understand the approach.

Tentative programme:

  • Non-monotonic reasoning and ASP;
  • Fuzzy and Real Logics;
  • Inserting and extracting knowledge from CLIP System;
  • Logic Tensor Networks and, if possible, Logical Neural Networks;
  • Computational Graphs.

References:
a recent book about neuro-symbolic integration:
Pascal Hitzler, Md Kamruzzaman Sarker (eds.), Neuro-Symbolic Artificial Intelligence - The State of the Art. Frontiers in Artificial Intelligence and Applications Vol 342, IOS Press, Amsterdam, 2022.

CFU / Hours

2 CFU/16 Hours

Teaching period

September 2024

Enter

Key information

Field of research
INF/01
ECTS
2
Term
Annual
Activity type
Optional
Course Length (Hours)
16

Staff

    Teacher

  • GF
    Guido Giuseppe Fiorino
  • RP
    Rafael Penaloza Nyssen
  • IZ
    Italo Francesco Zoppis

Enrolment methods

Self enrolment (Student)
Manual enrolments

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics