Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • Calendar
  • My Media
  • More
Listen to this page using ReadSpeaker
You are currently using guest access
 Log in
e-Learning - UNIMIB
Home Calendar My Media
Percorso della pagina
  1. Economics
  2. Master Degree
  3. Economia del Turismo [F7602M - F7601M]
  4. Courses
  5. A.A. 2024-2025
  6. 2nd year
  1. Statistical Methods for the Territorial and Social Environments
  2. Summary
Unità didattica Course full name
Statistical Methods for the Territorial and Social Environments
Course ID number
2425-2-F7601M007-F7601M017M
Course summary SYLLABUS

Blocks

Back to Statistical Methods for Tourism II

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi formativi

L'obiettivo dell'insegnamento è di dare agli studenti conoscenze statistiche progredite necessarie per effettuare autonomamente l'analisi quantitativa e l'interpretazione dei risultati di elaborazioni riguardanti i fenomeni turistici.

Contenuti sintetici

Durante il corso di Statistica dell’ambiente fisico e sociale verranno presentati i metodi di analisi statistica univariata e multivariata con particolare attenzione a quelli maggiormente utilizzati per l’analisi dell’ambiente inteso sia come territorio sia come quello costituito dalle condizioni di vita e di lavoro, dal livello di reddito, dal grado d'istruzione e dalla comunità di cui un individuo fa parte. Nel corso si illustrerà l’utilizzo del software SPSS per la soluzione di problemi reali

Programma esteso

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition)

  1. Introduction

- Introduction to Statistical Methodology

- Descriptive Statistics and Inferential Statistics

- The Role of Computers In statistics

  1. Sampling and Measurement

- Variables and their measurement

- Randomization

- Sampling Variability and Potential Bias

  1. Descriptive Statistics

- Describing Data with Tables and Graphs

- Describing the Center of the Data

- Describing Variability of the Data

- Measures of Position

- Bivariate Descriptive Statistics

- Sample Statistics and Population Parameters

  1. Analyzing Association between Categorical Variables

- Contingency tables

- Chi-Squared Test of Independence

- Residuals: Detecting the Pattern of Association

- Measuring Association In Contingency Tables

  1. Linear regression and correlation

- Linear Relationships

- Least Squares Prediction Equation

- The Linear Regression Model

- Measuring Linear Association: the Correlation

- Inference for the Slope and Correlation

  1. Introduction to multivariate relationship

- Association and Causality

- Controlling for Other Variables

- Types of Multivariate Relationships

  1. Multiple Regression and Correlation

- The Multiple Regression Model

- Example with Multiple Regression Computer Output

- Multiple Correlation and R²

- Inference for Multiple Regression Coefficients

- Comparing Regression Models

- Partial Correlation

- Standardized Regression Coefficients

  1. Combining Regression and ANOVA: Quantitative and Categorical Predictors
  • Regression with Quantitative and Categorical Predictors

Prerequisiti

Conoscenza della statistica descrittiva univariata

Metodi didattici

Il modulo prevede una attività didattica erogativa di 20 ore (lezioni frontali in aula) ed una attività interattiva di 8 ore in laboratorio statistico (utilizzo di SPSS).

Qualora i laboratori non fossero disponibili per motivi legati alla ristrutturazione degli edifici, una parte delle attività di laboratorio verrà fatta in presenza (circa 2 ore) e una parte da remoto (circa 6 ore).

Modalità di verifica dell'apprendimento

La verifica dell'apprendimento comprende:

  • una prova personale scritta sulla conoscenza teorica degli argomenti;
  • un lavoro di gruppo comprendente una presentazione orale ed una relazione relativamente ad un'indagine originale sul tema del turismo.

Il voto finale del modulo sarà dato dalla media ponderata della prova personale (con peso 30%) e del lavoro di gruppo (con peso 70%).

Testi di riferimento

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition).

Periodo di erogazione dell'insegnamento

Secondo semestre

Lingua di insegnamento

Inglese

Sustainable Development Goals

CITTÀ E COMUNITÀ SOSTENIBILI
Export

Learning objectives

The course will give to the students the advanced statistical knowledge necessary to independently perform quantitative analysis and interpretation of the results concerning the tourism phenomena.

Contents

During the course of the Territorial and social statistics will be presented the methods of univariate and multivariate statistical analysis with special focus on those most commonly used for the analysis , where for the environment is understood as a territory and as the one constituted by the conditions of life and work, from income level, educational level and the community to which an individual belongs. The course will illustrate the use of the SPSS software for the solution of real problems.

Detailed program

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition)

  1. Introduction

- Introduction to Statistical Methodology

- Descriptive Statistics and Inferential Statistics

- The Role of Computers In statistics

  1. Sampling and Measurement

- Variables and their measurement

- Randomization

- Sampling Variability and Potential Bias

  1. Descriptive Statistics

- Describing Data with Tables and Graphs

- Describing the Center of the Data

- Describing Variability of the Data

- Measures of Position

- Bivariate Descriptive Statistics

- Sample Statistics and Population Parameters

  1. Analyzing Association between Categorical Variables

- Contingency tables

- Chi-Squared Test of Independence

- Residuals: Detecting the Pattern of Association

- Measuring Association In Contingency Tables

  1. Linear regression and correlation

- Linear Relationships

- Least Squares Prediction Equation

- The Linear Regression Model

- Measuring Linear Association: the Correlation

- Inference for the Slope and Correlation

  1. Introduction to multivariate relationship

- Association and Causality

- Controlling for Other Variables

- Types of Multivariate Relationships

  1. Multiple Regression and Correlation

- The Multiple Regression Model

- Example with Multiple Regression Computer Output

- Multiple Correlation and R²

- Inference for Multiple Regression Coefficients

- Comparing Regression Models

- Partial Correlation

- Standardized Regression Coefficients

  1. Combining Regression and ANOVA: Quantitative and Categorical Predictors
  • Regression with Quantitative and Categorical Predictors

Prerequisites

Univariate descriptive statistics

Teaching methods

The module includes 20 hours of didactic activity (lectures in the classroom) and 8 hours of interactive activity in the statistical laboratory (using SPSS).

If the laboratories are unavailable due to building renovations, part of the laboratory activities will be conducted in person (about 2 hours) and part remotely (about 6 hours).

Assessment methods

The assessment includes:

  • a personal written test on the theoretical knowledge of the topics;
  • a group project, which includes an oral presentation and a report on an original survey on the topic of tourism.

The final grade for the module will be a weighted average of the personal test (weight: 30%) and the group project (weight: 70%).

Textbooks and Reading Materials

Agresti A., Finlay B. “Statistical Methods for the Social Sciences” Pearson International Edition (fourth Edition).

Semester

Second semester

Teaching language

English

Sustainable Development Goals

SUSTAINABLE CITIES AND COMMUNITIES
Enter

Key information

Field of research
SECS-S/05
ECTS
4
Term
Second semester
Activity type
Mandatory
Course Length (Hours)
28
Degree Course Type
2-year Master Degreee
Language
English

Staff

    Teacher

  • MZ
    Mariangela Zenga
  • Tutor

  • Daniele Giona Pirotta
    Daniele Giona Pirotta

Enrolment methods

Self enrolment (Student)
Manual enrolments

Sustainable Development Goals

SUSTAINABLE CITIES AND COMMUNITIES - Make cities and human settlements inclusive, safe, resilient and sustainable
SUSTAINABLE CITIES AND COMMUNITIES

You are currently using guest access (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics