- Area di Scienze
- Corso di Laurea Magistrale
- Scienze e Tecnologie Geologiche [F7401Q]
- Insegnamenti
- A.A. 2024-2025
- 2° anno
- Mineralogia Industriale ed Ambientale
- Introduzione
Syllabus del corso
Obiettivi
Il corso si propone di approfondire le conoscenze di base acquisite nella Laurea Triennale in ambito giacimenti minerari – georisorse s.l., approfondendo gli aspetti di interesse industriale ed ambientale. Verrà trattata nel dettaglio l'evoluzione della crosta terrestre dall'Archeano al Fanerozoico, con particolare riguardo ai fenomeni metallogenici. Materie prime e metalli "critici" per l'industria: PGE (Platinum Group Elements), REE (Rare Earth Elements), Sb, Be, Co, Ga, Ge, In, Li, Mg, Nb, Re, Ta e W; per ognuno verranno fornite le conoscenze di base mineralogiche, giacimentologiche, industriali e le relative problematiche ambientali. Verrà approfondito il settore delle ceramiche, vetri, leganti (calce e cementi) e refrattari, con particolare riguardo alle materie prime, alla loro caratterizzazione ed ai processi industriali. Infine, verranno trattate le fibre minerali s.l. (amianti ed altre fibre minerali, FAV), dagli aspetti mineralogici a quelli industriali, fino alle problematiche igienistiche ed analitiche (aria, suoli, terre e rocce da scavo, manufatti).
Contenuti sintetici
1) Concetti base in ambito giacimentologico: ore & industrial mineals, tenore, tonnellaggio, Clarke, morfologia dei corpi minerari, tessiture ed ore dressing, principali giacimenti di origine magmatica, idrotermale, metamorfica, sedimentaria, residuale ed arricchimento supergenico.
2) Evoluzione della crosta terrestre e fenomeni metallogenici dell'Archeano: greenstone belts, komatiiti e giacimenti a Fe-Ni-Cu-PGE, Algoma-type BIF, graniti TTG, mineralizzazioni a Au-U.
3) Evoluzione della crosta terrestre e fenomeni metallogenici del Proterozoico: complessi basici stratificati (Es. Bushveld Complex), mineralizzazioni a Cr-V-PGE, carbonatiti, kimberliti, giacimenti SEDEX.
4) Evoluzione della crosta terrestre e fenomeni metallogenici del Fanerozoico: porphyry a Cu-Mo-Au-Sn, MVT (Mississippi Valley Type), VMS (Volcanogenic Massive Sulphide), placer, filoni mesotermali orogenici, lateriti, arricchimento supergenico.
5) Processi idrotermali: origine dei fluidi, sorgenti dei metalli, meccanismi di circolazione dei fluidi, leganti clorurati e solforati, meccanismi di deposizione, tecniche di studio (es. inclusioni fluide).
6) Metalli "critici": REE, PGE, Sb, Be, Co, Ga, Ge, In, Li, Mg, Nb, Re, Ta e W. Proprietà chimiche e fisiche, mineralogia, giacimenti minerari, applicazioni industriali, problematiche ambientali, sostituzioni.
7) Ceramiche silicatiche e ceramiche “speciali”, vetri, leganti inorganici (calce, cementi) e refrattari: materie prime, caratterizzazione mineralogica e chimica, processi industriali.
8) Amianto ed altre fibre minerali: mineralogia, giacimenti minerari, usi industriali, problematiche ambientali, patologie legate all'esposizione a fibre di amianto, tecniche analitiche per lo studio e la quantificazione in aria ed in materiali massivi (manufatti, suoli, terre e rocce da scavo), FAV (fibre artificiali vetrose).
Programma esteso
Concetti base, ore geology & industrial minerals, giacimenti minerari
Introduzione al corso, ore minerals & industrial minerals, tenore e tonnellaggio, cut-off. Corpi minerari singenetici ed epigenetici, filoni, vene, pipes, mantos, corpi stratiformi e stratabound. Giacimenti magmatici, cristallizzazione frazionata e liquazione. Giacimenti idrotermali, fattori chiave nella loro genesi. Giacimenti sedimentari, chimici, residuali, arricchimento supergenico. Giacimenti metamorfici.
Tettonica e metallogenesi nell'Archeano
Terreni a gneiss-granuliti e greenstone belts, stratigrafia dei greenstone belts. Lave komatiitiche e mineralizzazioni a solfuri massicci di Fe-Ni-Cu-PGE. Evoluzione dell'atmosfera, cianobatteri, sviluppo della vita nell'Archeano. Eventi orogenetici ed intrusioni granitoidi TTG, mineralizzazioni associate.
Tettonica e metallogenesi nel Proterozoico
Principali eventi tettonici nel Proterozoico: accrescimento della crosta continentale, magmatismo anorogenico, rifting intracontinentale, catene orogeniche ensialiche. Complessi basici stratificati: l'esempio del Bushveld Complex. Modello di Irvine: cristallizzazione della cromite per contaminazione di rocce crostali e per mescolamento di un magma evoluto con un magma primitivo. Carbonatiti, giacimenti a REE, Nb, Ti. Kimberliti e diamanti, genesi di magmi kimberlitici. Il mercato industriale e gemmologico del diamante. Banded Iron Formations, GOE (Great Oxidation Event), mineralogia dei BIF e nomenclatura.
Tettonica e metallogenesi nel Fanerozoico
Crosta oceanica, cicli di Wilson, relazioni con la metallogenesi. Ofioliti e cromiti podiformi. Giacimenti MVT (Mississippi Valley Type), porphyry, VMS (volcanogenic massive sulphide), filoni mesotermali orogenici, lateriti, arricchimento supergenico.
Processi idrotermali
Origine dei fluidi, acque magmatiche, metamorfiche, meteoriche, miste. Sorgenti di metalli e meccanismi per la circolazione dei fluidi (thermally-driven, gravity-driven, fault-dilatancy-driven, orogeny-driven). Leganti clorurati e solforati, metalli e leganti soft e hard. Meccanismi di deposizione: variazioni di pH, Eh, T, P, rocce reattive, boiling, mixing, brecce idrauliche. Diagrammi pH - Eh, inclusioni fluide, geotermometri e geobarometri su solfuri, isotopi stabili. Fenomeni di alterazione idrotermale, wall rock-alteration, giacimenti porphyry, epitermali, mesotermali ed ipotermali.
REE: giacimenti, applicazioni industriali, problematiche ambientali
REE: geochimica e mineralogia. Giacimenti: primari e secondari, carbonatiti, rocce magmatiche alcaline, placer, residuali. Applicazioni industriali delle REE e problematiche ambientali. Mercato mondiale delle REE, prospettive, sostituzioni, riciclaggio.
Metalli "critici" per l'industria
Critical metals, applicazioni industriali, mercato globale, riciclaggio. Antimonio, Berillio, Cobalto, Gallio, Germanio, Indio, Litio, Magnesio, PGM – Platinum Group Metals, Renio, Niobio, Tantalio, Tungsteno. Per ogni metallo verranno approfondite le proprietà chimiche e fisiche, mineralogia, principali giacimenti minerari, ore dressing & treatment, applicazioni industriali, problematiche ambientali, risorse e riserve, prezzi, prospettive future e materiali alternativi.
Ceramiche, vetri, leganti e refrattari
Ceramiche silicatiche, ceramiche “speciali”, vetri, leganti inorganici (calce e cementi), refrattari. Materie prime e loro caratterizzazione mineralogica e chimica, processi industriali, proprietà tecniche e caratterizzazione dei manufatti, criticità ed aspetti innovativi.
Amianto ed altre fibre minerali
Introduzione alla problematica amianto: mineralogia, serpentino ed anfiboli, concetto di abito asbestiforme, produzione mondiale e distribuzione dei giacimenti minerari. Amianto: proprietà tecniche del crisotilo e degli amianti di anfibolo. NOA: naturally occurring asbestos. Manufatti contenenti amianto, friabili e compatti. Principali tecniche di rimozione di MCA, smaltimento in discarica, inertizzazione, incapsulamento, confinamento. Principali patologie legate all'esposizione professionale ed occasionale ad amianto. Determinazione del contenuto di amianto in campioni massivi e in polveri aerodisperse, criticità analitiche. Cenni alle FAV (Fibre Artificiali Vetrose).
Prerequisiti
Conoscenze di base di mineralogia, petrografia, chimica e ore geology.
Modalità didattica
2 CFU frontali, 3 CFU di laboratorio, 1 CFU di didattica campus abroad (escursione didattica sul terreno di due giorni, oppure due escursioni giornaliere). Erogato in italiano o in inglese (in caso di presenza di studenti stranieri).
a) 11 lezioni da 2 ore in presenza, Didattica Erogativa
b) 15 attività di laboratorio da 2 ore in presenza, Didattica Interattiva
c) 2 uscite sul campo (Campus Abroad) da 6 ore in presenza, Didattica Interattiva
In caso di emergenze sanitarie le lezioni si svolgeranno in modalità mista: parziale presenza (laboratorio e campus abroad) e lezioni videoregistrate asincrone.
Materiale didattico
Slide del corso (disponibili su e-learning), appunti e dispense distribuiti durante il corso. Testi consigliati dal docente.
Ore geology - introduzione
Pirajno (2009) - Hydrothermal processes and mineral systems. Springer, 1250 pp.
Ridley (2013) - Ore deposit geology. Cambridge University Press, 398 pp.
Robb (2021) - Introduction to ore forming processes., 2nd edition. Blackwell Publishing, 456 pp.
Kogel, Trivedi, Barker & Krukowski (2006) - Industrial minerals and rocks. Commodities, markets and uses (VII edition). Society for Mining, Metallurgy and Exploration, Inc. (SME), 1548 pp.
Boudreau (2019) - Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions. Cambridge University Press, 275 pp.
Primavori (1999) - Planet Stone. Giorgio Zusi editore, 336 pp.
Critical metals & raw materials
Gunn (2014) - Critical metals handbook. AGU Wiley, 439 pp.
Caratterizzazione di ore & industrial minerals
Christidis (2011) - Advances in the characterization of industrial minerals. EMU notes in Mineralogy, Vol. 9, The Mineralogical Society of Great Britain and Ireland, 485 pp.
Amianto ed altre fibre minerali
Gualtieri (2017) - Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity. EMU notes in Mineralogy, Vol. 18, The Mineralogical Society of Great Britain and Ireland, 536 pp.
Ceramiche, leganti, vetri & refrattari
Carter & Norton (2007) – Ceramic Materials: science and Engineering. Springer, 716 pp.
Askeland, Fulay & Wright (2010) – The Science and Engineering of Materials – VI Edition. Cengage Learning, 921 pp.
Schroeder (2018) - Clays in the Critical Zone. Cambridge University Press, 246 pp.
Periodo di erogazione dell'insegnamento
I semestre
Modalità di verifica del profitto e valutazione
Prova scritta preliminare della durata di 15 minuti, test a risposte chiuse (15 quesiti, 2 punti per ogni risposta corretta). Viene valutata la correttezza delle risposte. La prova preliminare incide per il 20% sul voto finale.
Successiva prova scritta (durata 2 ore) con una decina di domande aperte (da 2 a 4 punti per ogni risposta corretta e completa, in funzione della complessità dell'argomento). Vengono valutate la correttezza delle conoscenze, la capacità espositiva e di sintesi. Questa prova scritta incide per il 40% sulla votazione finale.
Esame orale finale (durata 20-30 minuti), colloquio sugli argomenti svolti a lezione: da 3 a 4 domande aperte. Vengono valutate la correttezza delle conoscenze, la chiarezza espositiva, il linguaggio appropriato, nonchè la capacità di estendere a casi reali le conoscenze teoriche. L'esame orale contribuisce per il 40% all'esito finale.
Orario di ricevimento
Lunedì dalle 10:30 alle 12:30, oppure su appuntamento (edificio U4, I piano, stanza 1027).
Sustainable Development Goals
Aims
The course aims to deepen the basic knowledge acquired in the three-year Degree in the field of ore geology - applied mineralogy. The evolution of the Earth's crust from the Archean to the Phanerozoic Eon will be treated in detail, especially the metallogenic phenomena. Particular attention will be dedicated to hydrothermal phenomena and to the various types of related deposits. "Critical" metals for the industry: PGE (Platinum Group Elements), REE (Rare Earth Elements), Sb, Be, Co, Ga, Ge, In, Li, Mg, Nb, Re, Ta and W; for each one the basic knowledge of mineralogy, ore deposits, industrial uses and related environmental issues will be provided. The sector of ceramic materials, glass, inorganic binders (lime and cement) and refractories will be examined in depth, from raw materials, technical characterization up to industrial processes. Finally, asbestos and other mineral fibres will be characterized, from the mineralogical to the industrial aspects, to the hygienic and analytical problems (air, soil, earth and excavation rocks, ACMs).
Contents
1) Basic concepts in the field of ore geology: ore & industrial minerals, tenor, tonnage, Clarke, morphology of mineral bodies, ore textures and processing, main magmatic, hydrothermal, metamorphic, sedimentary, residual and super-gene enrichment ore deposits.
- Evolution of the Earth's crust and metallogenic events of the Archean: greenstone belts, komatiites and massive sulphide Fe-Ni-Cu-PGE deposits, Algoma-type BIF, TTG granites, Au-U deposits.
3) Evolution of the Earth's crust and metallogenic events of the Proterozoic: mafic-ultramafic layered intrusions (e.g. Bushveld Complex), Cr-V-PGE mineralizations, carbonatites, kimberlites, SEDEX deposits.
4) Evolution of the Earth’s crust and metallogenic events of the Phanerozoic: Cu-Mo-Au-Sn porphyry, MVT (Mississippi Valley Type), VMS (Volcanogenic Massive Sulphide), placer, orogenic mesothermal lodes, laterites, supergenic enrichment.
5) Hydrothermal processes: origin of fluids, sources of metals, mechanisms of circulation of fluids, chloride-dominant and sulphide-dominant complexing, deposition mechanisms, study techniques (e.g. fluid inclusions).
6) "Critical" metals": REE, PGE, Sb, Be, Co, Ga, Ge, In, Li, Mg, Nb, Re, Ta and W. Chemical and physical properties, mineralogy, mineral deposits, industrial applications, environmental issues, substitutions.
7) Silicatic ceramic materials and “special” ceramics, glass, binders (lime and cement), refractories. Raw materials and their mineralogical and chemical characterization, industrial processes.
8) Asbestos and other mineral fibres: mineralogy, ore deposits, industrial uses, environmental problems, pathologies related to exposure to asbestos fibers, analytical techniques for the study and quantification in air and in massive materials (asbestos containing materials - ACMs, soils, earth and rocks from excavation), MMVF (man-made vitreous fibers).
Detailed program
Basic concepts, ore & industrial minerals, ore deposits
Introduction, ore & industrial minerals, tenor and tonnage, cut-off. Syngenesis and epigenesis, lodes, veins, pipes, mantos, pods, stratiform and stratabound ore bodies. Magmatic deposits, fractional crystallization and liquation. Hydrothermal deposits, key factors in their genesis. Sedimentary, chemical, residual deposits, supergene enrichment. Metamorphic deposits.
Archean tectonics and ore deposits
High grade gneiss-granulites terranes and greenstone belts, stratigraphy of greenstone belts. Komatiitic lavas and Fe-Ni-Cu-PGE massive sulphide deposits. Evolution of the atmosphere, cyanobacteria, development of life in the Archean. Orogenic phenomena and TTG-suite granite intrusions, related ore deposits.
Proterozoic tectonics and ore deposits
Main tectonic events in the Proterozoic: growth of the continental crust, anorogenic magmatism, intracontinental rifting, ensialic orogenic belts, mobile belts. Layered mafic-ultramafic complexes: the example of the Bushveld Complex. Irvine model: crystallization of chromite by contamination of crustal rocks and by mixing of an evolved magma with a primitive magma. Carbonatites, REE, Nb, Ti ore deposits. Kimberlites and diamonds, genesis of kimberlitic magmas. The diamond in the industrial and gemological market. Banded Iron Formations, GOE (Great Oxidation Event), BIF mineralogy and nomenclature.
Phanerozoic tectonics and ore deposits
Oceanic crust, Wilson cycles, relationships with ore deposits. Ophiolites and podiform chromites. MVT (Mississippi Valley Type) deposits, porphyry, VMS (volcanogenic massive sulphide), mesothermal orogenic lodes, laterites, supergene enrichment.
Hydrothermal processes
Origin of fluids: magmatic, metamorphic, meteoric, mixed waters. Metal sources and mechanisms for the circulation of fluids (thermally-driven, gravity-driven, fault-dilatancy-driven, orogeny-driven). Chloride-dominant and sulphide-dominant complexing, soft and hard metals and ligands. Deposition mechanisms: changes in pH, Eh, T, P, reactive rocks, boiling, mixing, hydraulic breccias. pH - Eh diagrams, fluid inclusions, geothermometers and geobarometers on sulphides, stable isotopes. Hydrothermal alteration, wall rock-alteration, porphyry, epithermal, mesothermal and hypothermal deposits.
REE: deposits, industrial applications, environmental issues
REE: geochemistry and mineralogy. Ore deposits: primary and secondary, carbonatites, alkaline magmatic rocks, placers, laterites. Industrial REE applications and environmental issues. World market for REEs, perspectives, substitutions, recycling.
Critical metals
Critical metals, industrial applications, global market, recycling. Antimony, Beryllium, Cobalt, Gallium, Germanium, Indium, Lithium, Magnesium, PGM - Platinum Group Metals, Rhenium, Niobium, Tantalum and Tungsten. For each metal: chemical and physical properties, mineralogy, main ore deposits, ore dressing and treatment, industrial applications, environmental issues, resources and reserves, prices, outlook and alternative materials.
Ceramic materials, glass, binders (lime and cement), refractories
Silicate ceramics and “special” ceramic, glass, inorganic binders (lime and cement) and refractories. Raw materials and their chemical and mineralogical characterization, industrial processes, technical properties and commercial varieties, critical issues and innovative approaches.
Asbestos and other mineral fibres
Introduction to asbestos and other mineral fibres: mineralogy, serpentine and amphibole asbestos, concept of asbestiform crystal habit, world production and distribution of mineral deposits. Asbestos: technical properties of chrysotile and amphibole asbestos. NOA: naturally occurring asbestos. Asbestos containing materials (ACMs), friable and compact. Main techniques of removal of ACM, landfill, inertization, encapsulation, confinement. Main pathologies related to professional and occasional exposure to asbestos. Determination of the asbestos content in bulk samples and in airborne dust, analytical criticalities. MMVF (Man-made Vitreous Fibers).
Prerequisites
Basic knowledge of mineralogy, petrography, chemistry and ore geology.
Teaching form
3 credits for lectures, 2 credits for laboratory, 1 credit for campus abroad activity (2 days field trip, or 2 one-day field trips). Course held in Italian or English (in case of presence of foreign students).
a) 11 two-hour lectures, in person, Delivered Didactics
b) 15 two-hour lab activities, in person, Interactive Teaching
c) 2 six-hour field activities, in person, Interactive Teaching
In case of health emergencies, lessons will take place in a mixed mode: partial presence (laboratory and capus abroad) and asynchronous recorded lessons.
Textbook and teaching resource
Course slides (available on e-learning), notes distributed during the course. Texts recommended by the teacher.
Ore geology - introduction
Pirajno (2009) - Hydrothermal processes and mineral systems. Springer, 1250 pp.
Ridley (2013) - Ore deposit geology. Cambridge University Press, 398 pp.
Robb (2021) - Introduction to ore forming processes., 2nd edition. Blackwell Publishing, 456 pp.
Kogel, Trivedi, Barker & Krukowski (2006) - Industrial minerals and rocks. Commodities, markets and uses (VII edition). Society for Mining, Metallurgy and Exploration, Inc. (SME), 1548 pp.
Boudreau (2019) - Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions. Cambridge University Press, 275 pp.
Primavori (1999) - Planet Stone. Giorgio Zusi editore, 336 pp.
Critical metals & raw materials
Gunn (2014) - Critical metals handbook. AGU Wiley, 439 pp.
Characterization of ore & industrial minerals
Christidis (2011) - Advances in the characterization of industrial minerals. EMU notes in Mineralogy, Vol. 9, The Mineralogical Society of Great Britain and Ireland, 485 pp.
Asbestos and other mineral fibres
Gualtieri (2017) - Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity. EMU notes in Mineralogy, Vol. 18, The Mineralogical Society of Great Britain and Ireland, 536 pp.
Ceramics, inorganic binders, glass and refractories
Carter & Norton (2007) – Ceramic Materials: science and Engineering. Springer, 716 pp.
Askeland, Fulay & Wright (2010) – The Science and Engineering of Materials – VI Edition. Cengage Learning, 921 pp.
Schroeder (2018) - Clays in the Critical Zone. Cambridge University Press, 246 pp.
Semester
I semester
Assessment method
Preliminary written test lasting 15 minutes, closed-ended test (15 questions, 2 points for each correct answer). Correctness of answers is evaluated. The preliminary test affects 20% of the final mark.
Subsequent written test (duration 2 hours) with about 10 open-ended questions (2 to 4 points for each correct and complete answer, depending on the complexity of the topic). Correctness of knowledge, expository and synthesis skills are assessed. This written test affects 40% of the final mark.
Final oral exam (duration 20-30 minutes), interview on topics covered in class: 3 to 4 open-ended questions. Correctness of knowledge, clarity of exposition, appropriate language, as well as the ability to extend theoretical knowledge to real cases are evaluated. The oral examination contributes 40% to the final mark.
Office hours
Monday from 10:30 to 12:30 AM, or by appointment (building U4, I floor, room 1027).