Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Science
  2. Master Degree
  3. Artificial Intelligence for Science and Technology [F9103Q - F9102Q]
  4. Courses
  5. A.Y. 2025-2026
  6. 1st year
  1. Statistical Learning
  2. Summary
Insegnamento Course full name
Statistical Learning
Course ID number
2526-1-F9103Q023
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi formativi

Il corso si pone come obiettivo l'acquisizione delle principali tecniche di statistical learning (SL) e la loro implementazione nell’ambiente di programmazione R. Durante il corso verrà data particolare enfasi alla algorithmic modeling culture, prestando anche attenzione alla stima dell'incertezza nelle previsioni.

Il corso contribuisce al raggiungimento degli obiettivi formativi nell’area di apprendimento del CdS: “Artifical Intelligence”.

Contenuti sintetici

Gli argomenti principali sono:

  • Metodi basati sugli alberi e aspetti computazioni.
  • Moving beyond linearity.
  • Stima dell'incertezza.

Programma esteso

Metodi basati sugli alberi.

  • Alberi decisionali: classificazione e regressione.
  • Bagging.
  • Random forests.
  • Boosting e alberi additivi.
  • Ensemble learning.
    Focus: algoritmo gradient boosting.

Moving beyond linearity.

  • Regression splines and smoothing splines.
  • Generalized additive models.
  • Multivariate adaptive regression splines.

Uncertainty estimation.

  • Conformal prediction.

Prerequisiti

Si consiglia la conoscenza degli argomenti trattati nell'insegnamento di “Advanced Foundetions of Statistics for AI”.

Metodi didattici

Le lezioni si svolgono sia in aula che in laboratorio, integrando aspetti di carattere teorico con quelli pratico-applicativi di analisi dei dati e di programmazione in R.

Le 54 ore di didattica saranno così suddivise:

  • 32 ore di lezione;
  • 24 ore di attività di laboratorio.

Modalità di verifica dell'apprendimento

L'esame si compone di un esame scritto.

(31 punti su 31) Prova scritta a domande aperte e chiuse, in cui vengono valutati gli aspetti teorici del corso. Saranno inoltre presenti domande pratiche relative a R.

Testi di riferimento

T. Hastie, R. Tibshirani, J. Friedman (2017) The Elements of Statistical Learning. Springer.
D. Efron, T. Hastie (2016) Computer-Age Statistical Inference: Algorithms, Evidence, and Data Science. Cambridge University Press.
M. Kuhn, L. Johnson (2019) Feature Engineering and Selection: A Practical Approach for Predictive Models. Chapman & Hall/CRC Data Science.

Altro materiale verrà suggerito durante il corso.

Periodo di erogazione dell'insegnamento

Secondo semestre.

Lingua di insegnamento

Le lezioni saranno svolte in inglese. Il materiale e i libri di testo sono in Inglese.

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ
Export

Learning objectives

The course aims to acquire the main techniques of statistical learning (SL) and their implementation in the R programming environment. During the course, emphasis will be placed on the algorithmic modelling culture, while also paying attention to the estimation of uncertainty in predictions.

The course contributes to the achievement of the learning objectives in the subject area of the MSc: "Artifical Intelligence".

Contents

Main subjects are:

  • Tree-based methods and computational aspects.
  • Moving beyond linearity.
  • Uncertainty estimation.

Detailed program

Tree-based methods.

  • Decision trees: classification and regression.
  • Bagging.
  • Random forests.
  • Boosting and additive trees.
  • Ensemble learning
    Focus: gradient boosting algorithm.

Moving beyond linearity.

  • Regression splines and smoothing splines.
  • Generalized additive models.
  • Multivariate adaptive regression splines.

Uncertainty estimation.

  • Conformal prediction.

Prerequisites

Knowledge of topics covered in the course “Advanced Foundetions of Statistics for AI”.

Teaching methods

Lessons are held both in classroom and in lab, integrating theoretical principles with practicals aspects of data analysis and programming in R.

The 54 hours of teaching are organized as follows:

  • 32 hours of lectures, in person;
  • 24 hours of laboratory.

Assessment methods

The examination consists of a written.

(31 points out of 31) Written examination with open and closed questions, in which the theoretical aspects of the course are assessed. There will also be practical questions about R.

Textbooks and Reading Materials

T. Hastie, R. Tibshirani, J. Friedman (2017) The Elements of Statistical Learning. Springer.
D. Efron, T. Hastie (2016) Computer-Age Statistical Inference: Algorithms, Evidence, and Data Science. Cambridge University Press.
M. Kuhn, L. Johnson (2019) Feature Engineering and Selection: A Practical Approach for Predictive Models. Chapman & Hall/CRC Data Science.

Further readings will be suggested during the course.

Semester

Second semester.

Teaching language

The lessons are held in English, but the materials and textbooks are in English.

Sustainable Development Goals

QUALITY EDUCATION
Enter

Key information

Field of research
INF/01
ECTS
6
Term
Second semester
Activity type
Mandatory to be chosen
Course Length (Hours)
56
Degree Course Type
2-year Master Degreee
Language
English

Staff

    Teacher

  • MB
    Matteo Borrotti

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments

Sustainable Development Goals

QUALITY EDUCATION - Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
QUALITY EDUCATION

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics