Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • More
Listen to this page using ReadSpeaker
 Log in
e-Learning - UNIMIB
Home
Percorso della pagina
  1. Science
  2. Master Degree
  3. Data Science [FDS02Q - FDS01Q]
  4. Courses
  5. A.A. 2023-2024
  6. 2nd year
  1. Data in Public and Social Services
  2. Summary
Unità didattica Course full name
Data in Public and Social Services
Course ID number
2324-2-FDS01Q028-FDS01Q034M
Course summary SYLLABUS

Blocks

Back to Data Science Lab in Public Policies and Services
Data in Public and Social Services

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

L'insegnamento vuole far apprendere a studenti e studentesse come analizzare dati medici (specialmente quelli di cartelle cliniche elettroniche) attraverso tecniche di statistica computazionale e di apprendimento automatico per scoprire nuova conoscenza sulle condizioni dei pazienti.

Contenuti sintetici

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R and Python programming languages

Programma esteso

In corso di definizione

Prerequisiti

Statistica di base e basi dell'apprendimento automatico
Conoscenza di base di R o Python

Modalità didattica

Lezioni in presenza ed esercitazioni in presenza

Materiale didattico

Slides presentate a lezione ed articoli scientifici segnalati a lezione

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

Progetto scientifico personale, consegna di report sul progetto svolto, e presentazione orale del lavoro svolto

Orario di ricevimento

Da concordare via email scrivendo a davide.chicco(AT)unimib.it

Sustainable Development Goals

SALUTE E BENESSERE
Export

Aims

This module aims at teaching students how to analyze medical data (especially, data of electronic health records) through computational statistics and machine learning techniques to infer new knowledge about the conditions of patients.

Contents

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R and Python programming languages

Detailed program

To be defined

Prerequisites

Basic statistics and basic machine learning
Basic knowledge of R o Python

Teaching form

In-person theory classes and practice exercise classes

Textbook and teaching resource

Classes slides and scientific papers mentioned during classes

Semester

Second semester

Assessment method

Personal work on a scientific project, delivery of a report on the work done, and oral presentation of the work done

Office hours

To define via email by writing to davide.chicco(AT)unimib.it

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING
Enter

Key information

Field of research
ING-INF/05
ECTS
3
Term
Second semester
Activity type
Mandatory to be chosen
Course Length (Hours)
25
Degree Course Type
2-year Master Degreee
Language
English

Staff

    Teacher

  • Davide Chicco
    Davide Chicco
  • Assistant

  • VC
    Vasco Coelho

Enrolment methods

Manual enrolments
Self enrolment (Student)

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING - Ensure healthy lives and promote well-being for all at all ages
GOOD HEALTH AND WELL-BEING

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics