Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Science
  2. Master Degree
  3. Data Science [FDS02Q - FDS01Q]
  4. Courses
  5. A.A. 2024-2025
  6. 2nd year
  1. Natural Language Processing
  2. Summary
Insegnamento Course full name
Natural Language Processing
Course ID number
2425-2-FDS01Q011
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

Lo scopo del corso è fornire un'introduzione ai concetti fondamentali relativi all'elaborazione del linguaggio naturale (NLP) nonché una
panoramica dei principali strumenti utilizzati nel settore. Inoltre, verranno presentate alcune applicazioni di NLP, ad es. information retrieval, traduzione automatica e rilevamento di discorsi di odio.

Contenuti sintetici

Il contenuto del corso include i principi fondamentali dell'elaborazione del linguaggio naturale (NLP) e offre una panoramica degli strumenti chiave utilizzati in questo campo. Il corso coprirà una vasta gamma di argomenti, che vanno dalle tecniche statistiche ai recenti progressi negli approcci neurali. Inoltre, il corso comprende dimostrazioni pratiche di diverse applicazioni di NLP, tra cui information retrieval, traduzione automatica e rilevamento dell'incitamento all'odio.

Programma esteso

Intoduzione al corso

  • Rationalist and Empiricist Approaches to Language
  • The Ambiguity of Language: Why NLP Is Difficult
    Linguistic Essentials
  • Lexical resources
  • Zipf’s laws
  • Collocations
  • Concordances
  • Syntax
    Frequentist Representation of Text (TF, TF-IDF, etc..) e Word Embeddings
  • Word2Vec
  • FastText
  • Glove
    Techiche di visualizzazione di embeddings:
    • Principal Components Analysis
  • T-distributed stochastic neighbor embedding
  • Uniform Manifold Approximation and Projection
    Sequence-to-Sequence (RNN, LSTM)
    Transformers and Large Language Models
  • Attention Mechanisms: Self and Multi Head Attention
    Contextualized Language Models:
  • ELMO
  • BERT
  • GPT
  • LLAMA
    Prompting and Instruct Tuning
    Transformers and Large Language Models
  • Interpretability and Explainability of Language Models

Prerequisiti

Basic knowledge of statistics and programming languages.

Modalità didattica

Il corso sarà tenuto in lingua inglese e si articolerà sia in lezioni frontali che introdurranno gli argomenti principali, sia in sessioni tutoriali in cui verranno spiegati gli strumenti open source.
Possono far parte del corso seminari tenuti da esperti a livello nazionale e internazionale.

12 lezioni da 2 ore svolte in modalità erogativa in presenza;
12 lezioni da 2 ore svolte in modalità interattiva (lezioni asincrone).

Materiale didattico

Daniel Jurafsky and James Martin, "Speech and Language Processing, 2nd Edition", Prentice Hall, 2008.

Emily M. Bender, "Linguistic Fundamentals for Natural Language Processing", Synthesis lectures on human language technologies, Morgan&Claypool Publishers, 2013.

Yoav Goldberg, "Neural Network Methods for Natural Language Processing", Synthesis lectures on human language technologies, Morgan&Claypool Publishers, 2017.

Mohammad Taher Pilehvar and Jose Camacho-collados, "Embeddings in Natural Language Processing", Synthesis Lectures on Human Language Technologies, Morgan & Claypool Publishers, 2021.

Periodo di erogazione dell'insegnamento

First Semester

Modalità di verifica del profitto e valutazione

Progetto
• Il progetto consiste nello sviluppo di uno strumento per l'elaborazione del linguaggio naturale basato su metodi e modelli presentati durante il corso.
• E' necessario identificare un dominio di interesse e un set di dati per il quale si intende affrontare compiti specifici che coinvolgano metodi, modelli e strumenti di NLP.
• Il progetto deve essere presentato oralmente
• Il progetto viene valutato nell'intervallo [0-24]

Esame orale
• La prova orale può avere un esito compreso tra [-8; +8]
• Si compone di 4 domande su argomenti affrontati durante il corso
-2 punti per una risposta errata o per nessuna risposta, +2 punti per una risposta corretta.

Orario di ricevimento

To be agreed with the teacher

Export

Aims

The aim of the course is to provide an introduction to the fundamental concepts related to Natural Language Processing (NLP) as well as an
overview of the main tools used in the field. Moreover, some NLP applications will be presented, e.g. information retrieval, machine translation and hate speech detection.

Contents

The course content includes fundamental principles of Natural Language Processing (NLP) and offers an overview of the key tools utilized in this field. The course will cover a range of topics, ranging from statistical techniques to recent advancements in neural approaches. Moreover, the course incorporates practical demonstrations of different NLP applications, including information retrieval, machine translation, and hate speech detection.

Detailed program

Course introduction

  • Rationalist and Empiricist Approaches to Language
  • The Ambiguity of Language: Why NLP Is Difficult
    Linguistic Essentials
  • Lexical resources
  • Zipf’s laws
  • Collocations
  • Concordances
  • Syntax
    Frequentist Representation of Text (TF, TF-IDF, etc..) and Word Embeddings
    • Word2Vec
    • FastText
    • Glove
      Visualization of embeddings:
    • Principal Components Analysis
    • T-distributed stochastic neighbor embedding
    • Uniform Manifold Approximation and Projection
      Sequence-to-Sequence (RNN, LSTM)
      Transformers and Large Language Models
    • Attention Mechanisms: Self and Multi Head Attention
      Contextualized Language Models:
    • ELMO
    • BERT
    • GPT
    • LLAMA
      Prompting and Instruct Tuning
      Transformers and Large Language Models
  • Interpretability and Explainability of Language Models

Prerequisites

Basic knowledge of statistics and programming languages.

Teaching form

The course will be taught in English, and it will consist of both lectures introducing the main topics and tutorial sessions where open-source tools will be explained.
Seminars held by experts at national and international levels may be part of the course.

Textbook and teaching resource

Daniel Jurafsky and James Martin, "Speech and Language Processing, 2nd Edition", Prentice Hall, 2008.

Emily M. Bender, "Linguistic Fundamentals for Natural Language Processing", Synthesis lectures on human language technologies, Morgan&Claypool Publishers, 2013.

Yoav Goldberg, "Neural Network Methods for Natural Language Processing", Synthesis lectures on human language technologies, Morgan&Claypool Publishers, 2017.

Mohammad Taher Pilehvar and Jose Camacho-collados, "Embeddings in Natural Language Processing", Synthesis Lectures on Human Language Technologies, Morgan & Claypool Publishers, 2021.

Semester

First Semester

Assessment method

Project
• The project consists in the development of a natural language processing tool based on methods and models presented during the course.
• Each group must identify a domain of interest and dataset for which it intends to address specific NLP tasks.
• The project must be presented orally
• The project is evaluated in the range [0-24]

Oral Exam
• The oral exam can have an outcome between [-8; +8]
• It consists of 4 questions about topics addressed during the course
-2 will be given for an incorrect answer or no answer, +2 for a correct answer.

Office hours

To be agreed with the teacher

Enter

Key information

Field of research
INF/01
ECTS
6
Term
Second semester
Activity type
Mandatory to be chosen
Course Length (Hours)
48
Degree Course Type
2-year Master Degreee
Language
English

Staff

    Teacher

  • EF
    Elisabetta Fersini
  • AR
    Alessandro Raganato

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Self enrolment (Student)

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics