Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • My Media
  • More
Listen to this page using ReadSpeaker
 Log in
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Science
  2. Master Degree
  3. Data Science [FDS02Q - FDS01Q]
  4. Courses
  5. A.A. 2025-2026
  6. 2nd year
  1. Data in Public and Social Services
  2. Summary
Unità didattica Course full name
Data in Public and Social Services
Course ID number
2526-2-FDS01Q043-FDS01Q04302
Course summary SYLLABUS

Blocks

Back to Data Science Lab in Public Policies and Services

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

L'insegnamento vuole far apprendere a studenti e studentesse come analizzare dati medici (specialmente quelli di cartelle cliniche elettroniche) attraverso tecniche di statistica computazionale e di apprendimento automatico per scoprire nuova conoscenza sulle condizioni dei pazienti.

Descrittori di Dublino:

  • D1 Conoscenza e capacità di comprensione
    Capire le fondamenta teoriche e logiche delle pratiche di data science in ambito biomedico
  • D2 Conoscenza e capacità di comprensione applicate
    Applicare i metodi di data science a dati biomedici reali tramite R
  • D3 Autonomia di giudizio
    Capire quale metodo o quale operazione utilizzare in determinati passaggi della data science applicata a dati biomedici
  • D4 Abilità comunicative
    Presentare i risultati d'un'applicazione di data science a dati biomedici con slides
  • D5 Capacità d'apprendere
    Sviluppo di capacità per l'apprendimento di nuovi metodi e nuove tecniche di data science

Contenuti sintetici

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R programming language

Programma esteso

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R programming language

Prerequisiti

Statistica di base e basi dell'apprendimento automatico
Conoscenza di base di R o Python

Modalità didattica

7 lezioni (ognuna da 2 ore per un totale di 14 ore) di lezione frontale teorica (didattica erogativa)
5 lezioni (4 da due ore ed 1 da un'ora per un totale di 9 ore) di esercitazioni con computer portatile (didattica interattiva)

Materiale didattico

Slides presentate a lezione ed articoli scientifici segnalati a lezione

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

L'esame finale prevede:
1- l'elaborazione d'un progetto scientifico personale, da sviluppare in R analizzando dati medici con le tecniche viste a lezione e durante le esercitazioni;
2- consegna di report sul progetto svolto;
3- presentazione orale del progetto svolto.

Nella componente 1 viene valutata la comprensione dei metodi da parte della studentessa o dello studente, la sua capacità d'applicarli in R a dati reali, e le sue capacità di programmazione.
Nella componente 2 viene valutata la capacità di descrivere il lavoro svolto in un resoconto scritto.
Nella componente 3 viene valutata la capacità di raccontare il lavoro svolto con presentazione orale e slides.

Ognuna delle tre componenti riceve un voto in trentesimi; il voto finale è la media tra i tre.

Non sono presenti prove in itinere.

Orario di ricevimento

Da concordare via email scrivendo a davide.chicco(AT)unimib.it

Sustainable Development Goals

SALUTE E BENESSERE
Export

Aims

This module aims at teaching students how to analyze medical data (especially, data of electronic health records) through computational statistics and machine learning techniques to infer new knowledge about the conditions of patients.

Dublin descriptors:

  • D1 Knowledge and understanding
    Understand the theoretical and logical foundations of data science practices in the biomedical field
  • D2 Applied knowledge and understanding
    Apply data science methods to real biomedical data using R
  • D3 Making judgements
    Understand which methods or operations to use in specific steps of data science applied to biomedical data
  • D4 Communication skills
    Present the results of a data science application to biomedical data with slides
  • D5 Learning skills
    Ability for learning new data science methods and techniques.

Contents

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R programming language

Detailed program

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R programming language

Prerequisites

Basic statistics and basic machine learning
Basic knowledge of R o Python

Teaching form

7 lectures (each of them made of 2 hours for a total of 14) of frontal theory teaching.
5 lectures (4 of two hours and 1 of one hour for a total of 9 hours) of practical excercises on the laptop computer (interactive teaching).

Textbook and teaching resource

Classes slides and scientific papers mentioned during classes

Semester

Second semester

Assessment method

The final exam consists of:
1- The development of a personal scientific project, to be deployed in R analyzing medical data through the techniques learnt during the theoretical classes and during the practical classes;
2- The delivery of a report on the project carried out;
3- An oral presentation of the project carried out.

In the first component, we will assess the student's understanding on the methods, their capability to apply them in R to real medical data, and their programming skills.
In the second component, we will assess the student's capability to describe the project carried out in a written report.
In the third component, we will assess the student's capability to narrate the project carried out through an oral presentation with slides.

Each of the three components receives a grade in 30 points; the final grade is the average between the three.

There are no mid-term exam tasks.

Office hours

To define via email by writing to davide.chicco(AT)unimib.it

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING
Enter

Key information

Field of research
INF/01
ECTS
3
Term
Second semester
Course Length (Hours)
23
Degree Course Type
2-year Master Degreee
Language
English

Staff

    Teacher

  • Davide Chicco
    Davide Chicco

Enrolment methods

Manual enrolments

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING - Ensure healthy lives and promote well-being for all at all ages
GOOD HEALTH AND WELL-BEING

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics