Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • Calendar
  • My Media
  • More
Listen to this page using ReadSpeaker
You are currently using guest access
 Log in
e-Learning - UNIMIB
Home Calendar My Media
Percorso della pagina
  1. Science
  2. Master Degree
  3. Data Science [FDS02Q - FDS01Q]
  4. Courses
  5. A.A. 2025-2026
  6. 2nd year
  1. Data Science Lab in Public Policies and Services
  2. Summary
Insegnamento con unità didattiche Course full name
Data Science Lab in Public Policies and Services
Course ID number
2526-2-FDS01Q043
Course summary SYLLABUS

Blocks

Skip Teaching units

Teaching units

Course full name Big Data in Public Health Course ID number 2526-2-FDS01Q043-FDS01Q04301
Course summary SYLLABUS
Course full name Data in Public and Social Services Course ID number 2526-2-FDS01Q043-FDS01Q04302
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

L'insegnamento vuole far apprendere a studenti e studentesse come analizzare dati medici (specialmente quelli di cartelle cliniche elettroniche) attraverso tecniche di statistica computazionale, di apprendimento automatico, e di analisi di sopravvivenza per scoprire nuova conoscenza sulle condizioni dei pazienti.
Questo insegnamento si propone di fornire i concetti di base dell'epidemiologia che sono alla base di un corretto approccio metodologico a un progetto di ricerca in sanità pubblica. Lo studente sarà in grado di trattare i dati in sanità pubblica in particolare concentrandosi su diversi aspetti tra cui il disegno dello studio, la gestione e l'analisi dei dati. Lo studente sarà in grado di implementare e di calcolare indicatori di qualità/performance.

Contenuti sintetici

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R and Python programming languages
Survival analysis
Epidemiologia della popolazione
Disegni di studio
Metodi statistici con applicazione ai registri e ai dati sanitari amministrativi

Programma esteso

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R and Python programming languages
Basics in population epidemiology.
Study designs: advanced designs to combine data from different sources
(registry data, biomarkers, biobanks, surveys).
Survival analysis: survival estimate and Cox model regression.
Record linkage approaches and statistical methods with application to registries and administrative health data.
Examples of Quality/performance indicators, outcome research with administrative data, system of indicators to evaluate the appropriateness of clinical pathways in chronic diseases.

Prerequisiti

Statistica di base e basi dell'apprendimento automatico
Conoscenza di base di R o Python

Modalità didattica

Lezioni in presenza ed esercitazioni in presenza
3 lezioni di 2 ore condotte in modalità remota (asincrona)

Materiale didattico

Slides presentate a lezione ed articoli scientifici segnalati a lezione

Articoli scientifici:
Davide Chicco, Vasco Coelho (2025) "A teaching proposal for a short course on biomedical data science", PLOS Computational Biology 21(4): e1012946. https://doi.org/10.1371/journal.pcbi.1012946

Libri di testo:
Kenneth J. Rothman Sander Greenland, Timothy L. Lash . Modern Epidemiology. Lippincott Williams & Wilkins; 3rd ed.
Eric Vittinghoff, David V. Glidden, Stephen C. Shiboski, Charles E. McCulloch. Regression Methods in Biostatistics
Linear, Logistic, Survival, and Repeated Measures Models. Statistics for Biology and Health book series. Springer; 2nd edition (March 6, 2012)
Marie Reilly "Beyond classic epidemiological designs" https://www.routledge.com/Controlled-Epidemiological- Studies/Reilly/p/book/9780367186784 Chapman & Hall/CRC Biostatistics Series 2023

Periodo di erogazione dell'insegnamento

Secondo semestre

Modalità di verifica del profitto e valutazione

Lavoro personale su un progetto scientifico comprendente entrambe le unità didattiche per verificare le capacità dello studente nell'applicazione della metodologia di ricerca in sanità pubblica. Consegna di una relazione e presentazione orale del lavoro svolto per l'unità didattica Big Data in Public and Social Services.
Questionario a risposta chiusa per valutare la preparazione sul programma dell'unità didattica Big Data in Public Health.

Orario di ricevimento

Da concordare via email scrivendo a davide.chicco(AT)unimib.it o paola.rebora(AT)unimib.it

Sustainable Development Goals

SALUTE E BENESSERE
Export

Aims

This module aims at teaching students how to analyze medical data (especially, data of electronic health records) through computational statistics and machine learning techniques to infer new knowledge about the conditions of patients.
This course aims to provide the basic concepts of epidemiology that are at the basis of a proper methodological
approach to a research project in public health. The student will be able to deal with data in public health
particularly focusing on several aspects including study design, data managment and analysis. The student will be
able to implement design strategies on registries and administrative health data and able to
calculate quality/performance indicators

Contents

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R and Python programming languages
Survival analysis
Population epidemiology
Study designs
Statistical methods with application to registries and administrative health data

Detailed program

Dataset search and retrieval
Data preparation and data cleaning
Exploratory data analysis
Unsupervised machine learning
Supervised machine learning
Feature ranking
Result understanding and validation
R and Python programming languages
Basics in population epidemiology.
Study designs: advanced designs to combine data from different sources
(registry data, biomarkers, biobanks, surveys).
Survival analysis: survival estimate and Cox model regression.
Record linkage approaches and statistical methods with application to registries and administrative health data.
Examples of Quality/performance indicators, outcome research with administrative data, system of indicators to evaluate the appropriateness of clinical pathways in chronic diseases.

Prerequisites

Basic statistics and basic machine learning
Basic knowledge of R o Python

Teaching form

In-person theory classes and practice exercise classes
3 2-hour lectures conducted in a remote (asynchronous) delivery mode

Textbook and teaching resource

Classes slides and scientific papers mentioned during classes

Articles:
Davide Chicco, Vasco Coelho (2025) "A teaching proposal for a short course on biomedical data science", PLOS Computational Biology 21(4): e1012946. https://doi.org/10.1371/journal.pcbi.1012946

Textbooks:
Kenneth J. Rothman Sander Greenland, Timothy L. Lash . Modern Epidemiology. Lippincott Williams & Wilkins; 3rd ed.
Eric Vittinghoff, David V. Glidden, Stephen C. Shiboski, Charles E. McCulloch. Regression Methods in Biostatistics
Linear, Logistic, Survival, and Repeated Measures Models. Statistics for Biology and Health book series. Springer; 2nd edition (March 6, 2012)
Marie Reilly "Beyond classic epidemiological designs" https://www.routledge.com/Controlled-Epidemiological- Studies/Reilly/p/book/9780367186784 Chapman & Hall/CRC Biostatistics Series 2023

Semester

Second semester

Assessment method

Personal work on a scientific project including both teaching units to test the ability of the student in the application of research methodology in public health. Delivery of a report, and oral presentation of the work done, for the Data in Public and Social Services unit.
Questionnaire with closed answer to evaluate the preparation on the program of the teaching unit Big Data in Public Health.

Office hours

To define via email by writing to davide.chicco(AT)unimib.it or paola.rebora(AT)unimib.it

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING
Enter

Key information

ECTS
6
Term
Second semester
Course Length (Hours)
48
Degree Course Type
2-year Master Degreee
Language
English

Staff

    Teacher

  • GC
    Giulia Capitoli
  • Davide Chicco
    Davide Chicco
  • Paola Rebora
    Paola Rebora

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Guest access

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING - Ensure healthy lives and promote well-being for all at all ages
GOOD HEALTH AND WELL-BEING

You are currently using guest access (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics